Overcoming Challenges of Replacing APEs Within Cleaning Formulations with Tomadol[®] 902

Presented by: Rick Theiner

Sr. Principal Applications Chemist

November 10, 2016

Why the Move from APEs?

Regulation is being driven by concerns over the effects of NPE exposure on the environment and on people

"...it was proved in *in-vitro* tests that nonylphenol has strong binding affinity to estrogen receptor and

strong estrogenic effects on fish."

Draft Rpt on Test Results of Endocrine Disrupting Effects of Nonylphenol on Fish, OECD

"NPEs degrade relatively easily in the environment to form short-chained NPEs and (especially under anaerobic conditions) NP, which are toxic to aquatic organisms."

Background Doc. On NP/NPEs. Ospar Commission аск_б, _

"... this report concludes that current environmental levels of alkylphenolic compounds are probably high enough to be affecting the hormonal control systems of some organisms. It is

also possible that human health could be being affected."

An Env. Ass. of Alkylphenol Ethoxylates and Alkylphenols. Friends of the Earth, Jan 95

"APEs have been shown to mimic estrogen and are

strongly suspected of causing endocrine

disruption. Both the nonylphenol and octylphenol forms have been found to cause breast cancer cells to multiply in the lab... All of this makes APEs a good thing to avoid." *EWG's Healthy Child initiative website guidance*

What Has Been the Response?

Many regions are restricting the use of nonylphenol ethoxylates (NPEs) through regulation

- **Europe:** Regulated under REACh Annex XVII which limits use to very low use-levels in cleaning
- Canada: Notification requirements for facilities using NPEs
- California: Included NPEs in the Candidate List
- USA: US EPA has issued new SNUR covering notification in use of NPEs for new uses and placed some NPs as reportable TRI chemicals

46. (a) Nonylphenol C₆H₄(OH)C₉H₁₉
(b) Nonylphenol ethoxylate (C₂H₄O)_EC₁₅H₂₄O
(concentrations higher than 0,1 % by mass.
Shall not be placed on the market or used as a substance or constituent of preparations in concentrations equal or higher than 0,1 % by mass for the following purposes:
(1) industrial and institutional cleaning except:

controlled closed dry cleaning systems where the unrelating ligned or instingented

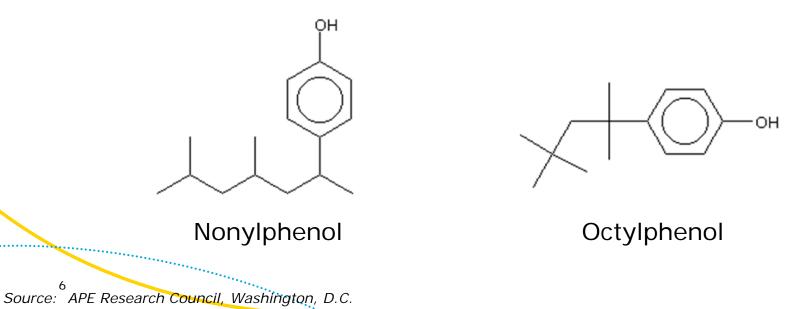
.....

What Does This Mean for Formulators?

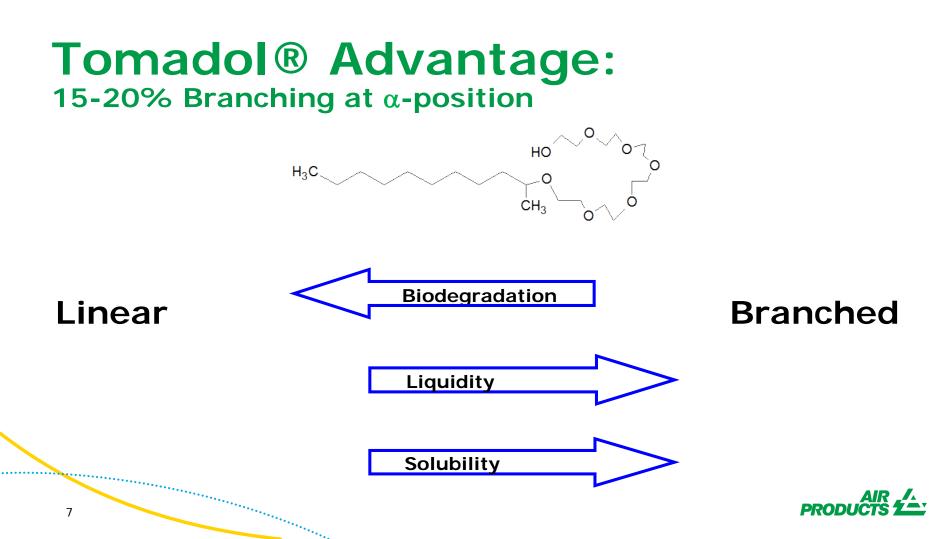
• Safeguard from future regulatory concerns

- Avoid risk of future consumer/worker backlash
- Position to meet environmental trends and international customer requirements
- Improve formulation properties and performance by reformulating with (mostly) linear alcohol ethoxylates

What are Your Options?


• Don't reformulate

- Let's just wait and see what happens...
- Reformulate
 - Work from the ground up to develop a new formula that meets the current requirements yet does not contain APE
 - Select a single material that will come "close enough" in meeting requirements and may simply replace APE
 - Take the opportunity to use a high performance product that will improve your formula while lowering the cost



How are **Alkylphenol Ethoxylates** Different from **Linear Alcohol Ethoxylates?**

PRODUCTS

Selecting an Ideal Candidate from HLB

Property	NP-9	Tomadol 91-6	Tomadol 1-7	Tomadol 25-7
Structure	Nonylphenol, 9EO	C ₉ -C ₁₁ , 6EO	C ₁₁ , 7EO	C ₁₂ -C ₁₅ , 7EO
HLB	12.9	12.4	12.9	12.3
Cloudpoint (°C)	54	52	58	50
Critical Micelle Conc. (wt%)	0.006	0.025	0.010	0.001
EST at CMC (dyne/cm)	32	29	28	30

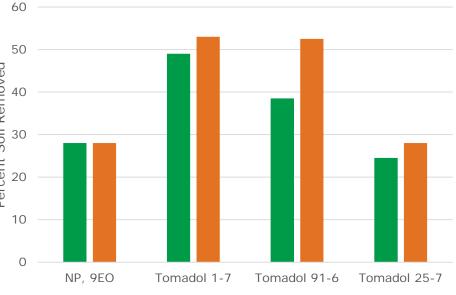
Performance Testing Hard Surface

Immersion Degreasing

- Various soil compositions
- Various substrates
- Cleaning solution agitated at a constant rate
- Soil removal determined by image analysis

Gardner Scrub (ASTM 4488-A5, Modified)

- Oily particulate soil or greasy food soil
- Various substrates
- Standard ASTM 4488-A5 procedure to clean
- Soil removal determined by reflectance or image analysis


••••••••••••••••

Selecting an Ideal Candidate from HLB

Immersion Degreasing, Noted Soil on Stainless Steel

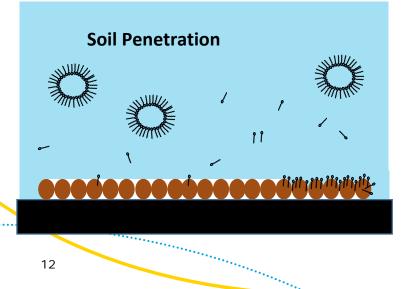
Hard Surface Cleaning Performance

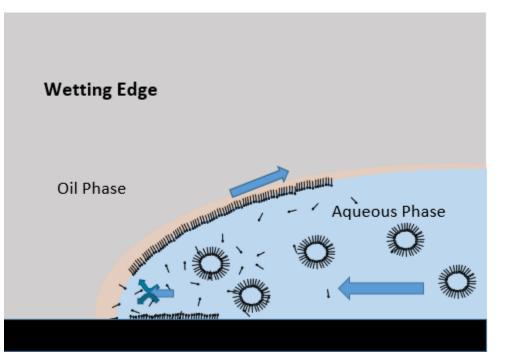
omponent	Wt%
DI Water	96.0
Sodium Metasilicate (5H ₂ O)	1.0
Potassium Hydroxide (45%)	1.0
EDTA Solution (39%)	1.0
Surfactant Noted	1.0

Petroleum Grease
Oily Particulate

Selecting an Ideal Candidate from HLB Emulsion Performance for Oily Particulate Soil

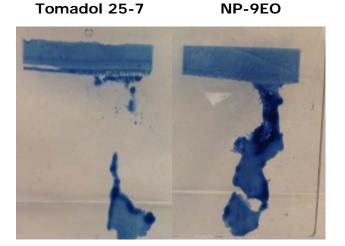
 Nonylphenol, 9EO
 Tomadol 91-6
 Tomadol 1-7
 Tomadol 25-7

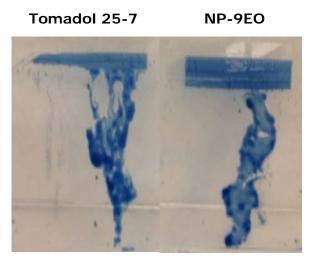




Hard Surface Cleaning Mechanisms

Functions of:


- Surface Tension Reduction
- Migration to Interface
- **Critical Micelle Concentration**
- Micelle Relaxation Time



Looking More Closely at Tomadol 25-7 Immersion Degreasing; Petroleum Grease on Glass

1.0% Surfactant2.5% Sodium Citrate0.5% Sodium Carbonate1.0% Tomamine Amphoteric 12

1.0% Surfactant2.0% KOH (45%)1.0% Sodium Metasilicate1.0% Tomamine Amphoteric 12

Performance Testing Laundry

Tergotometer

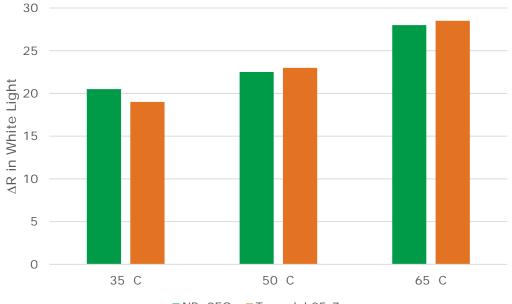
- Various soil compositions
- Various cloth substrates
- Cleaning solution agitated at a constant rate and temperature
- Soil removal determined either by approach of reflectance to "ideal" or change in reflectance

Swatch Fabrics

- Cotton
- Cotton/Poly Blend
- Polyester
- Nylon

Swatch Soils

- Dust Sebum
- Used Motor Oil
- Ground in Clay
- Lanolin


- Blood/Milk/Ink
- Grass Stain
- Carbon Black/Olive Oil
- Lipstick

Selecting an Ideal Candidate from HLB

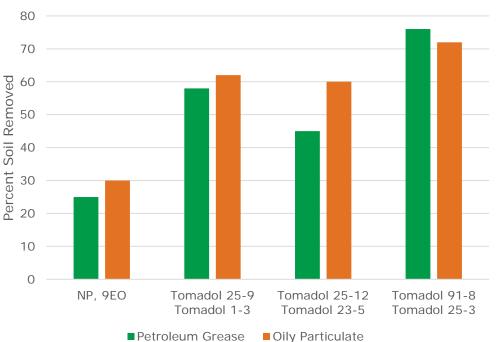
Laundry Performance at Various Temperatures

Conditions		
Surfactant	800ppm	
Alkalinity (as Na ₂ O)	600ppm	
Sodium Polyphosphate	300ppm	
Water Hardness (as Ca ²⁺)	150ppm	
Tergotometer	60rpm	
Equal parts dust sebum and used motor oil on cotton		

■NP, 9EO ■Tomadol 25-7

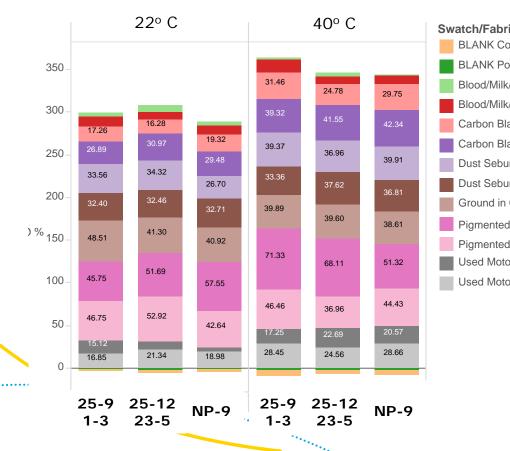
Candidates from Blending HLB

Property	NP-9	Tomadol 25-9 Tomadol 1-3 (90/10)	Tomadol 91-8 Tomadol 25-3 (85/15)	Tomadol 25-12 Tomadol 23-5 (65/35)
HLB	12.9	12.7	12.9	13.1
Cloudpoint (°C)	54	63	66	69
Critical Micelle Conc. (wt%)	0.006	0.002	0.022	0.001
EST at CMC (dyne/cm)	32	31	30	28


·····

.....

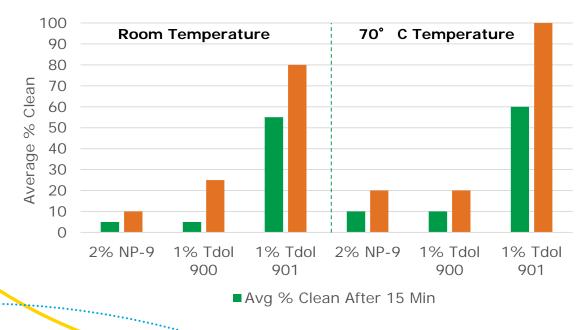
Selecting an Ideal Candidate from HLB


Hard Surface Cleaning Performance

Component	Wt%
DI Water	96.0
Sodium Metasilicate (5H ₂ O)	1.0
Potassium Hydroxide (45%)	1.0
EDTA Solution (39%)	1.0
Surfactant Noted	1.0

PRODUCTS 2

Selecting an Ideal Candidate from HLB

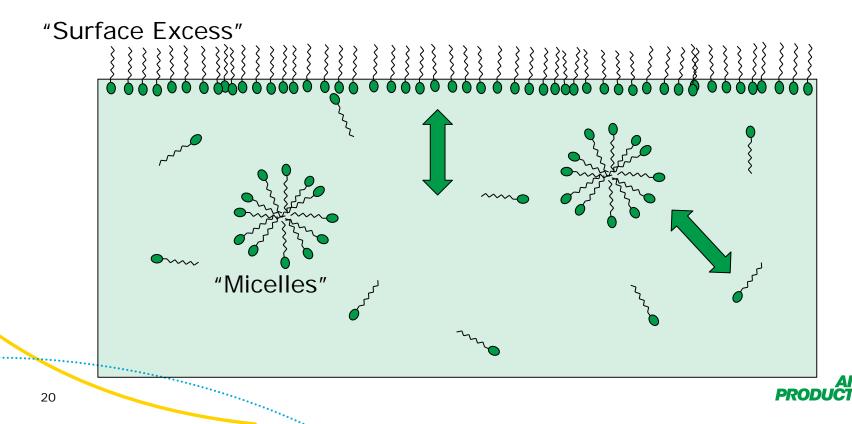


vatch/Fabric BLANK Cotton			
BLANK PolyCotton			
Blood/Milk/Ink Cotton	Condition		
Blood/Milk/Ink PolyCotton	Conditions		
Carbon Black w/ Olive Oil Cotton	Surfactant	600ppm	
Carbon Black w/ Olive Oil PolyCotton	Surfactant	ocoppin	
Dust Sebum Cotton	Alkalinity (as Na ₂ O)	200ppm	
Dust Sebum PolyCotton		200ppm	
Ground in Clay Cotton	Sodium Citrate	300ppm	
Pigmented Lanolin Cotton		o o o p p m	
Pigmented Lanolin Polyester	Water Hardness	. – .	
Used Motor Oil Cotton	(as Ca ²⁺)	150ppm	
Used Motor Oil Polyester			
	Tergotometer	60rpm	

Tomadol 901 vs NPE Surfactants Tomadol 901 can outperform Tomadol 900 and NP-9

Immersion degreasing test results of stainless steel slides soiled with transportation soil at room temperature and 70° C, Tomadol 901, 900, and NP-9

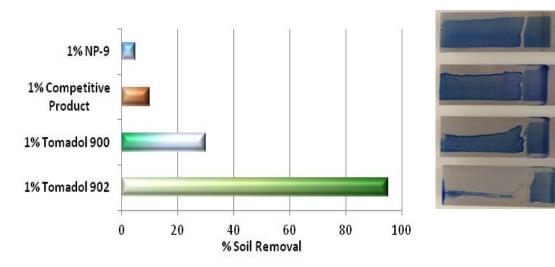
Tomadol 901 Surfactant is


able to provide superior cleaning in some formulations where Tomadol 900 is unable to be effective

Formulation

Components	Wt%
Water	q.s.
Sodium Metasilicate, Penta	1.0
Potassium Hydroxide	0.5
EDTA (39%)	1.0
Surfactant (as stated)	X

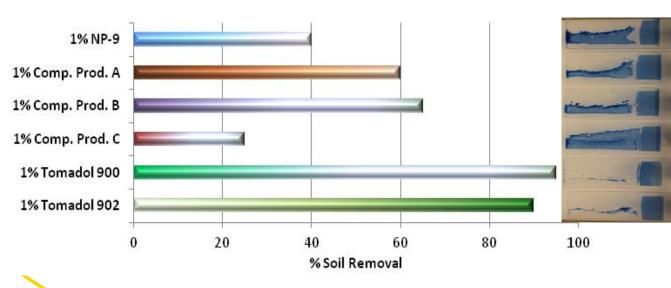
Surfactant Behavior Traditional View


Tomadol® 902 Surfactant The Next Generation in High Performance Nonionics

- Improved speed of cleaning
- Superior degreasing performance
- Reduced cost-in-use
- Favorable environmental profile

Tomadol[®] 902 Surfactant Improved speed of cleaning

Lithium Grease and Motor Oil on Stainless Steel


Tomadol 902 Surfactant Increases the speed of soil removal on stainless steel, achieving faster cleaning after six minutes of immersion

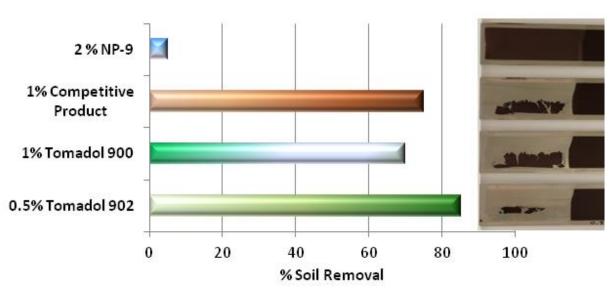
Test Formulations: 1% as supplied of either: NP-9, Competitive Product, Tomadol 900, or Tomadol 902, 1% Sodium Metasilicate, 1% KOH (45% agueous). Procedure: Stirred under constant conditions at room temperature for 6 minutes

Tomadol[®] 902 Surfactant Superior cleaning performance

Lithium Grease/Motor Oil on Glass

Tomadol 902 Surfactant

Improves overall cleaning outcomes relative to competitive benchmarks on glass.


In repeated testing, Tomadol 902 performs better than Tomadol 900 on a glass substrate

Text Formulations: 1% as supplied of either: NP-9; Competitive Product A, B, or C; Tomadol 900; or Tomadol 902, 1% Sodium Metasilicate, 1% KOH (45% aqueous). Procedure: Glass slides, soiled with tenacious Li grease/motor oil. Stirred under constant conditions at room temperature for 6 minutes 23

Tomadol[®] 902 Surfactant Reduce Cost-In-Use

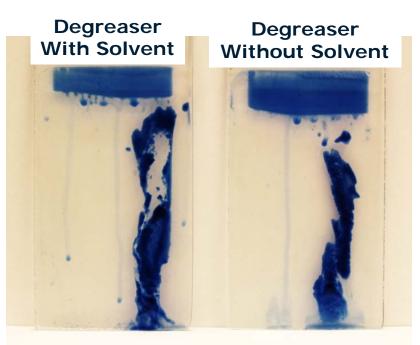
Transportation Soil on Stainless Steel Plates

Tomadol 902 Surfactant at half the level removes the same or even more soil than other NPE replacement surfactants

PRODICT

Test Formulations: Surfactant [2% NP-9, or 1% Competitive Product, or 1% Tomadol 900, or 0.5% Tomadol 902], 1% Sodium Metasilicate, 7% KOH (45% aqueous), DI water.

Procedure: Stainless Steel plates heavily soiled with Transportation Soil. Stirred under constant conditions at room temperature for 6 minutes AIR


Tomadol[®] 902 Surfactant

Superior Cleaning with Nearly zero VOC and No Solvents

Degreaser WITH Solvent Formulation

(1.6% VOC)

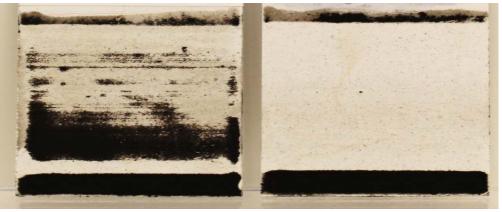
- 2.5% Sodium Citrate
- 0.5% Sodium Carbonate
- 0.65% Competitive product
- 1.6% Ethylene Glycol Monobutyl Ether

Degreaser WITHOUT Solvent Formulation

(0.35% VOC)

- 2.5% Sodium Citrate
- 0.5% Sodium Carbonate
- 1.3% Tomadol 902

Procedure: Glass slides soiled with tenacious Li grease/motor oil. Stirred under constant conditions at room temperature



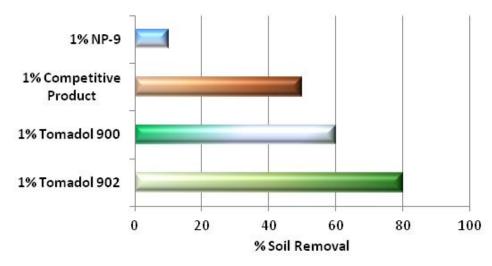
Tomadol[®] 902 Surfactant Effective for cleaning of vinyl COMPOSITE tiles

Tiles scrubbed with Gardner Scrub Tester for 10 scrub cycles using modified ASTM 4488-95 A5

Competitive Product

Tomadol 902

Tomadol 902 Surfactant

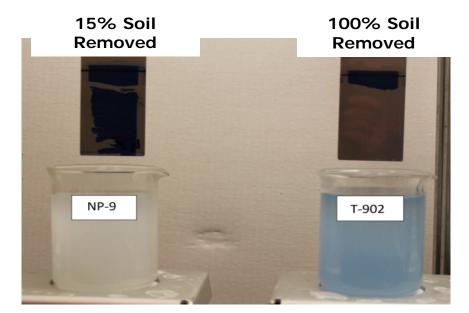

Is effective at cleaning via the ASTM 4488 "Gardner Scrub" method as well!

Test Formulations: 1% Tomadol 902 vs. 1% Competitive product (as supplied), 1% Sodium metasilicate, 1% KOH (45%). Procedure: Vinyl coated tiles with baked on oily particulate soil.

Tomadol[®] 902 Surfactant Effective in both low and high temperature cleaning

Lithium Grease/Motor Oil on Stainless Steel at 4°C

Tomadol 902 Surfactant


Cleaned better at low temperatures, generally achieving 20% better performance than the nearest benchmark in repeated testing

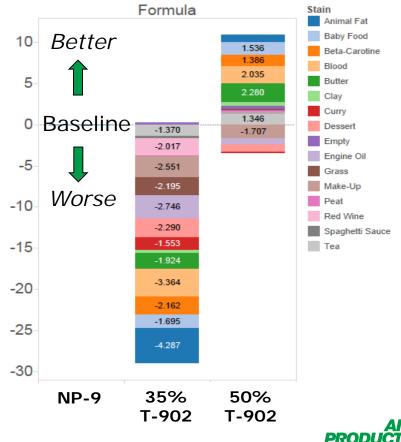
Test Formulations: 1% as supplied of either: NP-9, Competitive Product, Tomadol 900, or Tomadol 902, 1% Sodium Metasilicate, 1% KOH (45% agueous). edure: JJ Procedure: Soiled plates stirred at 4°C for 20 minutes. Stainless steel plates soiled with tenacious Li grease/motor oil.

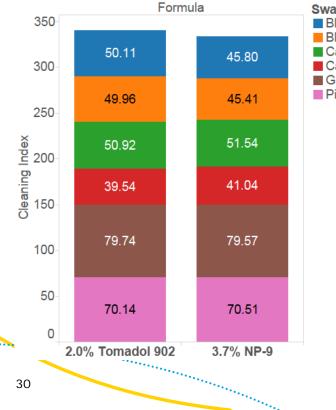
Tomadol[®] 902 Surfactant

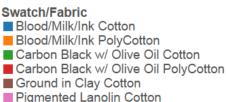
Effective in both low and high temperature cleaning

Tomadol 902 Surfactant

At half the level of the NP-9 showed significantly better cleaning


Test Formulations: 1% NP-9 vs 0.5% Tomadol 902 (as supplied), 1% Sodium metasilicate, 1% Versene 100 (39% Na4EDTA), 1% KOH (45%). Procedure: Soiled plates lowered into stirred formulations heated at 50°C. Stainless steel plates soiled with tenacious Li grease/motor oil. ure: Ju


Tomadol 902 Replaces APE in Laundry


A proprietary formula was provided to our Applications Testing laboratory to determine if **lowering the amount of nonionic surfactant** was possible with **Tomadol 902**.

The results indicated that it is!

Tomadol 902 Replaces APE in Laundry

We compared our own formulas using 2% Na-DDBSA and surfactant as shown...

Conditions:

- 400ppm Alkalinity
- 250ppm Tetrapotassium Pyrophosphate
- 300ppm Surfactant

150ppm Hardness (as CaCO₃) 90° F

Tomadol 902 – the solution to your APE replacement challenges

- Increased regulation is being driven by concerns over the effects of APE exposure on the environment and on people
- Formulators have 2 choices "wait and see" or work through reformulation challenges
- Tomadol 902 can replace APEs, as well as improve the overall performance of your formulation

For More Information, Please Visit: airproducts.com/cleaning

32

Join us January 26, 2017 for our next webinar:

Simplifying Formulation in Hard Surface Cleaners

Contact Us U.S. 800-345-3148 cheminfo@airproducts.com