

Introductions

Market Trends & Performance Drivers

Spotlight Products

Trends driving our lives and our industry: Implications for Paper & Paperboard ink & coatings suppliers

Consumer Preferences:

Growth in E-commerce

52% of consumers more willing to buy from merchant that provides premium packaging

Sustainability & Handling

Amazon, Starbucks, McDonalds, & Kraft-Heinz among the brands setting sustainability packaging goals

On-demand Economy, Convenience

50% of meals have been replaced by snacks

Printer Implications:

Printing on both sides of corrugated board to enhance customer 'un-boxing' experience upon delivery

Increased focus on **handling implications** of inks on workers,
end customers

Increasing demand for packaging, rapid print speeds, and automated printing presses.

BASF Solutions:

- Support high-speed printing and drying operations.
- Eliminate handling challenges, like foaming
- Low VOC products that reduce handling challenges
- High-quality inks that enable fine lines and text printing

Paper & Paperboard Spotlight Products:

Designed to address the needs of the changing printing landscape

Product

'Two Words'

Extended Description

Joncryl® 633

High Opacity

Non-film-forming, opaque emulsion supporting TiO₂ cost savings

Joncryl 1616

Low Foam

Excellent gloss & clarity with low foaming

Joncryl 2110

Low VOC

Long open time and low VOC for fine anilox process printing

Joncryl 2121

Quick Dry

Fast dry polymer for high-speed printing

Market context of increasing RM prices

May 8, 2017

"...today announced global price increases for all its titanium dioxide pigments. The following increases are effective July 1, 2017...North America: \$0.08 per pound (USD)"

Source: PRnewswire

March 28, 2018

"Titanium dioxide producer...has announced **price increases** that will come into effect on April 1, according to a letter to customers ...in North America, prices will increase by \$0.07 per pound (USD)"

Source: Industrial Minerals

January 22, 2018

"...will increase prices on inks, coatings, adhesives and pressroom chemicals, effective February 19, 2018, in response to the continuing and sustained rise in raw material and supply chain costs...Titanium Dioxide supply is tight on a global basis resulting in well-publicized price escalation over the last 12 months."

Source: Label & Narrow Web

April 24, 2018

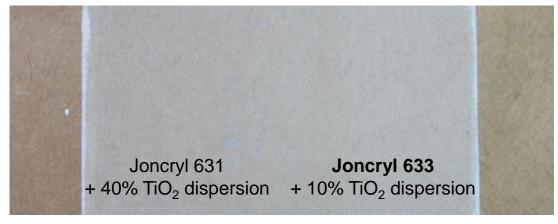
"...is still struggling with headwinds from rising raw material costs, including for titanium dioxide..."

Source: Industrial Minerals

April 25, 2018

"...the latest coatings company to report headwinds from rising titanium dioxide (TiO2) prices..."

Source: Industrial Minerals



A non-film-forming, opaque emulsion enabling brights and whites

TiO₂ replacement example

	J631	J633
TiO ₂ dispersion	40	10
Emulsion	46	71
Joncryl Wax 4	2.5	2.5
FoamStar SI 2280	0.5	0.5
Water	11	16

Joncryl 633 helps customers reduce costs by replacing expensive TiO₂ without sacrificing opacity.

A non-film-forming, opaque emulsion enabling brights and whites

Key Features and Benefits

- Excellent opacity
- Good resolubility
- Good water and rub resistance

Appearance	White emulsion
Molecular weight	>200,000
Non-volatile	37%
рН	7.2
Acid value (solids)	60
Viscosity (at 25°C)	600 cP
Density (at 25°C)	1.05 g/cm ³
Tg	104°C
MFFT	> 50°C
Total VOC	< 0.1% wt

A non-film-forming, opaque emulsion enabling brights and whites

Formulation support

- Opacity depends on keeping spaces between particles
- There are limits to what can be blended in without impacting opacity
- Customers may not see expected results with a simple drop-in
- Formulation support is available

Additional product information \rightarrow

le: Effect of lnk composition and handling on opacity of Joncryl 633

Author: Jennifer Rigney

Date completed: 19 November 2011

Keywords Joncryl 631, Joncryl 633, Joncryl 60, opacity, contrast ratio

Abstract.

Different blending and handling conditions which could potentially interfere with the opacity of the newly introduced Joncryl 633 were investigated. Heat sealing, and blending with resin solution, coalescent, and other emulsions can reduce opacity of Joncryl 633 based inks.

Introduction/Objective:

Joncyl 633 relies on its non-film forming behavior and presence of air voids in the dried obating to scatter light. Its high Tig keeps emulsion particles from compressing togets, during the drying process, leading to air voids between particles in the dried state. Conditions that would cause the Joncryl 633 particles to coalesce (heat and pressure, obsolvent) or would fill gaps between the particles (blending with other materials) could have a negative effect on opacity.

Experimental:

in the blending experiments, Joncryl 633 (pilot plant batch 3082x014) was mixed with three different materials:

- DPnB (coalescing solvent)
- Joncryl 60 (resin solution)
- Joncryl 631 (smaller particle size, high Tg emulsion)

When blending with Jonaryi 60 and Jonaryi 631, ratios are stated on a resin solids basis.

In the heating experiment, opacity was evaluated on a subjective visual basis. Jonoryl 633 was applied to kraft paper with a K1 wire wound bar and allowed to dry. It was then covered by aluminum foil and 'sealed' in the Sentinel heat sealer at the noted temperature/time/pressure conditions. The foil was removed and the opacity was noted relative to its original appearance.

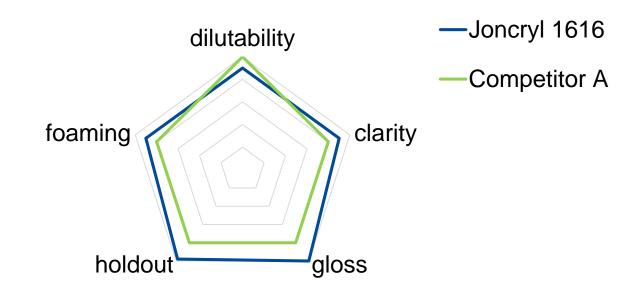
In the blending experiments, opacity was evaluated by contrast ratio. The materials were applied to a Lepeta card with a K2 wire wound bar and allowed to dry. The contrast ratio was then measured in the "Opacity" mode on the X-Rite densitionneter.

A hard film-forming emulsion with good gloss and clarity and

reduced foaming

Key Features and Benefits

- Excellent gloss, clarity and holdout
- Ink viscosity stability
- Resolubility and printability
- Low foaming during handling


Appearance	Translucent emulsion
Molecular weight	>200,000
Non-volatile	42.7 %
рН	8.5
Acid value (solids)	140
Viscosity (at 25°C)	800 cP
Density (at 25°C)	1.05 g/cm ³
Tg	40°C
MFFT	15°C
Total VOC	1.2% wt

A hard film-forming emulsion with good gloss and clarity and reduced foaming

Key Features and Benefits

- Excellent gloss, clarity and holdout
- Ink viscosity stability
- Suitable for flexo and gravure
- Suitable for inks and OPVs in packaging end uses

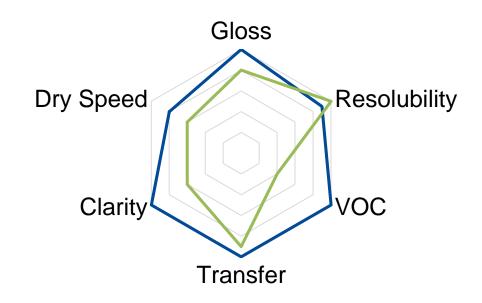
 $\textbf{Additional product information} \rightarrow$

Film-forming emulsion with long open time for fine-line anilox

printing

Key Features and Benefits

- Long open time with low VOC
- Outstanding gloss, clarity and holdout
- Excellent on-press resolubility and printability
- Good pH stability on long runs
- Glycol ether free and HAP free


Appearance	Translucent emulsion
Molecular weight	>200,000
Non-volatile	49%
рН	9.0
Acid value (solids)	65
Viscosity (at 25°C)	1200 cP
Density (at 25°C)	1.05 g/cm ³
Tg	22°C
MFFT	< 5°C
Total VOC	0.4% wt

Film-forming emulsion with long open time for fine-line anilox printing

Key Features and Benefits

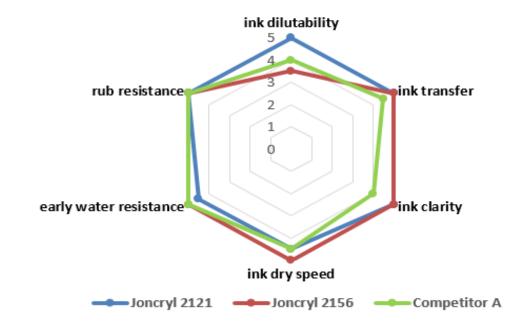
- Long open time with low VOC
- Enables high strength inks with high pigment loading and excellent transfer
- Outstanding gloss, clarity and holdout
- Excellent on-press resolubility and printability
- Good pH stability on long runs

- —Joncryl 2110
- —Typical High VOC Process Ink

A non-film-forming, fast drying emulsion with good gloss and clarity

Key Features and Benefits

- Fast dry speed
- Excellent resolubility and printability
- Viscosity stability
- Low VOC


Appearance	White emulsion
Molecular weight	>200,000
Non-volatile	51%
рН	8.0
Acid value (solids)	42
Viscosity (at 25°C)	750 cP
Density (at 25°C)	1.03 g/cm ³
Tg	98°C
MFFT	>80°C
Total VOC	< 1.0% wt

A non-film-forming, fast drying emulsion with good gloss and clarity

Key Features and Benefits

- Designed for high speed gravure and flexo printing
- Excellent gloss, holdout and clarity
- Glycol ether free
- Good dilutability for enhanced costin-use

Additional product information →

Paper and Paperboard Key Contacts

Simon Foster

Market Segment Manager – Paper & Paperboard Phone: 248-948-2006, Mobile: 832-557-5494, Email: simon.foster@basf.com

Jack Miller

Product Manager – Joncryl Phone: 248-948-2030, Mobile: 734-552-0313, Email: jack.miller@basf.com

Jennifer Rigney

Technical Specialist – Water-based Resins for Printing & Packaging Phone: 248-948-2328, Mobile: 734-626-7162, Email: jennifer.rigney@basf.com

For more information on these products, please visit www.ulprospector.com.

While the descriptions, designs, data and information contained herein are presented in good faith and believed to be accurate, they are provided for guidance only. Because many factors may affect processing or application/use, BASF recommends that the reader make tests to determine the suitability of a product for a particular purpose prior to use. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. IN NO CASE SHALL THE DESCRIPTIONS, INFORMATION, DATA OR DESIGNS PROVIDED BE CONSIDERED A PART OF THE BASF TERMS AND CONDITIONS OF SALE.

Further, the descriptions, designs, data and information furnished by BASF hereunder are given gratis and BASF assumes no obligation or liability for the description, designs, data or information given or results obtained all such being given and accepted at the reader's risk.

Joncryl® is a registered trademark of BASF Group.

© BASF Corporation, 2018

We create chemistry