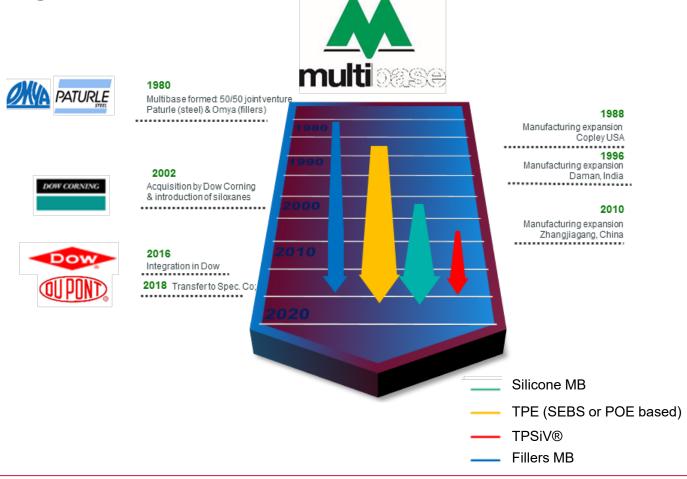
November 27, 2018

Permanent slip additive for PE films

DOW CORNING™ MB 25-235 Masterbatch

Céline Chevallier, PhD Product Development Engineer - Multibase DowDupont Specialty Products Division



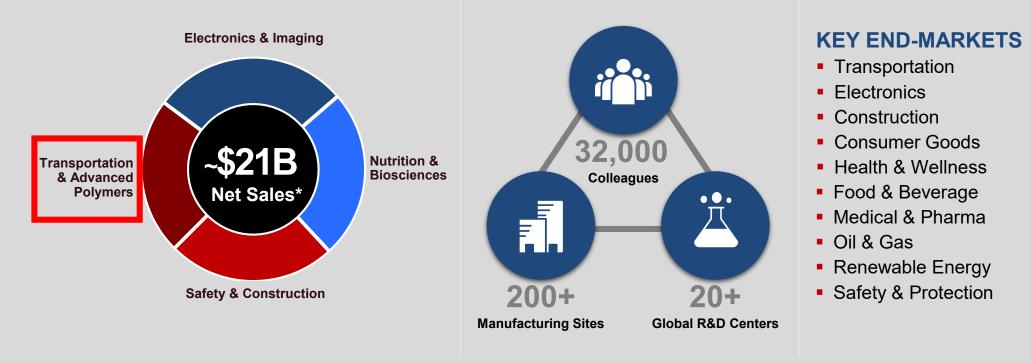
Agenda

- Multibase and silicone masterbatch introduction
- Challenges
- Features and benefits
- Experimental set-ups
- Technical results
- Conclusions

Multibase Transforming our innovation

Bringing Together Two Complementary Portfolios To create Three Strong Companies

Broad offering and robust pipeline across germplasm, biotech traits and crop protection One of the strongest, deepest chemistry toolkits with robust technology and asset integration, scale and competitive capabilities


MATERIALS SCIENCE

Future D

World-class innovation process and application development capabilities

Specialty Products(future DuPont) Our Division At-a-Glance

*2017 Proforma Sales

Transportation & Advanced Polymers Leading Market Positions in Attractive Growth Markets

INDUSTRIAL MARKETS

TRANSPORTATION

 High-performance polymers
 Structural adhesives

 > High-temperature lubricants
 > Brake Fluids

INDUSTRIAL

Perfluoroelastomer Parts Aerospace Photovoltaics

ELECTRONICS

Constraints of the second seco

Electrical Components Semiconductor materials

> Consumer Electronics

CONSUMER

CONSUMER

 Food Contact Materials
 Sportswear and Recreation
 Furniture

MEDICAL

Medical Devices
 Bio Pharma Processing
 Pharmaceutical Solutions

Multibase Our Global Presence

Silicone Brings Multiple Benefits to Plastic Materials & Processing

The challenge

PE blown film DOW CORNING[™] MB25-235 features & benefits

Céline Chevallier, PhD

The Challenge in PE Blown Films

Developing long-lasting low coefficient of friction (COF) is critical to ensure:

- seamless throughput
- high productivity
- consistent quality during post process operation, such as FFS

DOW CORNING[™] MB25-235 Masterbatches main features

- ✓ Does not migrate
- Does not transfer
- Efficient at low dosage, introduced in one skin layer only
- ✓ Can be used through conventional dosing equipment
- Designed to be used in combination with antiblock

Expected benefits

- > A stable long-term COF will **ease logistics and storage**, and during post production process (e.g. FFS)
- The low content needed allows a reduced impact on haze

DOW CORNING[™] MB25-235

- ✓ Improves coefficient of friction
- No impact on mechanical properties
- ✓ No transfer effect: compatible with printing process on the opposite layer
- Compatible with LDPE and LLDPE

	DOW CORNING [™] MB25-235 Masterbatch
Active content	25%
Physical form	Pellets
Process	Pellets mix
Processing temperature	180°C - 220°C
Typically recommended usage level	3%

Experimental Set-ups

Blown Film Fabrication Parameters COF Measurements Mechanical Properties Transfer Test Description

2

Céline Chevallier, PhD

Films without slip additive – base structure

Α	12.5µm	LLDPE/LDPE 2/1 + 3000ppm Talc as antiblock
В	25µm	LDPE - d=0.918 - MFI 2.5 g/10min
С	12.5µm	LLDPE - d=0.900 - MFI 3g/10min

- Layer A: Skin layer in which slip properties are desired
- Layer B: Core layer
- Layer C: Opposite skin layer, potentially Corona-treated to be metallized or printed
- NB: Screw speed and outputs were slightly changed to ensure same layers thicknesses between composition

Films with organic slip additive – organic reference

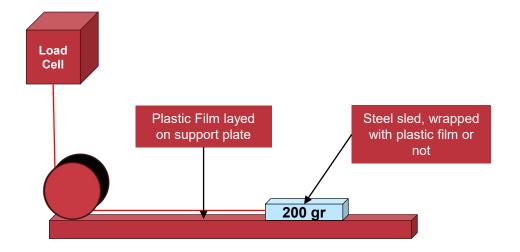
А	12.5µm	LLDPE/LDPE 2/1 + 3000ppm Talc as antiblock
В	25µm	LDPE - d=0.918 - MFI 2.5 g/10min + 0.5wt% of organic slip agents
С	12.5µm	LLDPE - d=0.900 - MFI 3g/10min

- Layer A: Skin layer in which slip properties are desired
- Layer B: Core layer
- Layer C: Opposite skin layer, potentially Corona-treated to be metallized or printed
- NB: Screw speed and outputs were slightly changed to ensure same layers thicknesses between composition

Films with silicone additive – DOW CORNING[™] MB25-235 Masterbatch

А	12.5µm	LLDPE/LDPE 2/1 + 3000ppm Talc + 2, 4 and 6wt% DOW CORNING™ MB 25-235
В	25µm	LDPE - d=0.918 - MFI 2.5 g/10min
С	12.5µm	LLDPE - d=0.900 - MFI 3g/10min

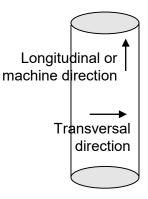
- Layer A: Skin layer in which slip properties are desired
- Layer B: Core layer
- Layer C: Opposite skin layer, potentially Corona-treated to be metallized or printed
- NB: Screw speed and outputs were slightly changed to ensure same layers thicknesses between composition

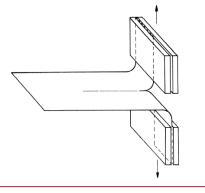

Blown film extrusion process

- Lab scale Colin extruder, 3-layers configuration
- Screw diameter 25mm
- Die diameter 60mm, gap 0.6 mm, Maximum width 350mm
- Skin layer screw speed: 34 rpm
- Skin layer melt temperature: 215°C
- Pulling speed: 4 m/min
- Blow-up ratio (BUR) 2.12, Draw down ratio (DDR) 5.65
- Film total thickness 50µm, output around 4kg/h, depending on the composition extruded

Tests Parameters

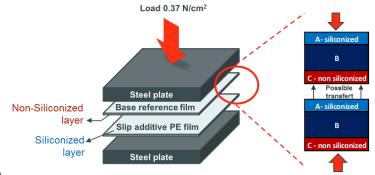
Coefficient of friction

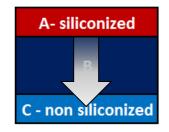

- Zwick coeficient of friction, following ASTM D1894
 - $\circ~$ 254 mm x 127 mm 200g Sled
 - Running speed: 150 mm.min⁻¹
 - Running length: 60 mm


Tests Parameters

Mechanical properties

- Tensile: Zwick equipment, following EN 13655:2002
 - Running speed: 500 mm.min⁻¹
 - Samples: 10mm width strips
 - Gap between grips: 50mm

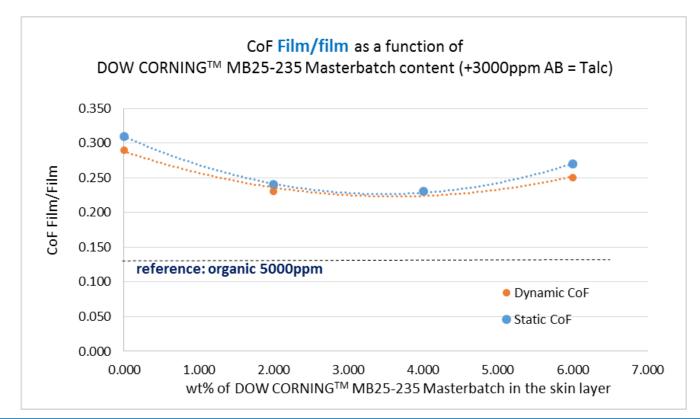

- Tear test: Zwick equipment, following ISO 6383-1:2015
 - o Speed: 200mm/min



Tests Parameters

Transfer study

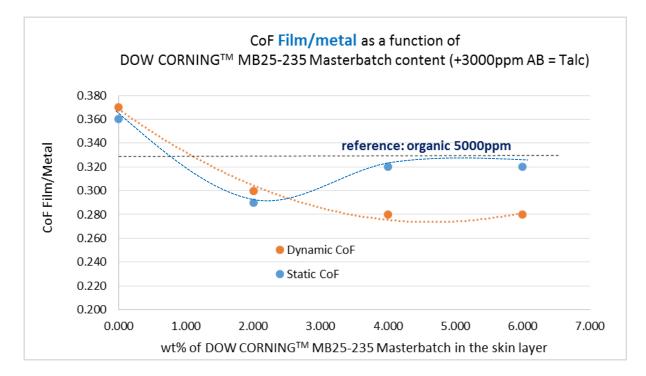
- **Contact migration test** (after 2 months at 23°C under weight)
 - Simulation of winding pressure by pressing films between metallic plates.
 - Base reference PE film (containing no slip additive) and SiMB treated PE film are laid together with a 0.37N/cm² pressure. (weight 15 KG/ 20*20 cm)
 - After exposure, IR ATR spectroscopy is conducted to track Si migration
- Intra-layer migration test (after 1 month at 60°C)
 - The samples are stored for 1 month in an oven at 60°C to accelerate ageing and degradation
 - Layer C (non-siliconized skin layer) is IR tested to see the presence of silicone or amide, coming from the opposite skin layer and migrating through all layers.


Technical results

COF Comparison

Mechanical Properties

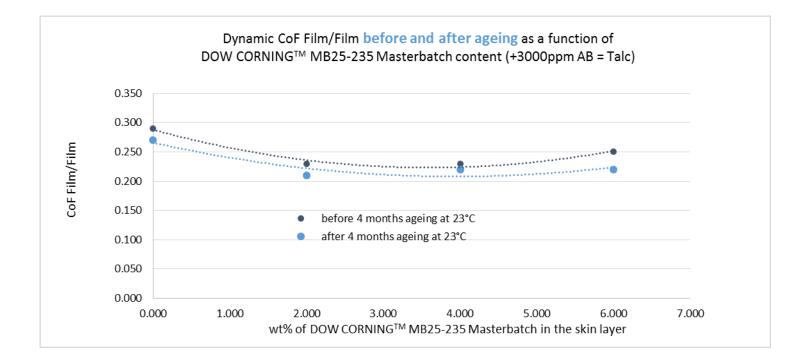
Transfer Analysis


Dynamic and Static COF Film/Film

An optimum is achieved at 2 to 4 wt% of DOW CORNING[™] MB 25-235 silicone Masterbtach with a CoF Film/Film around 0.22

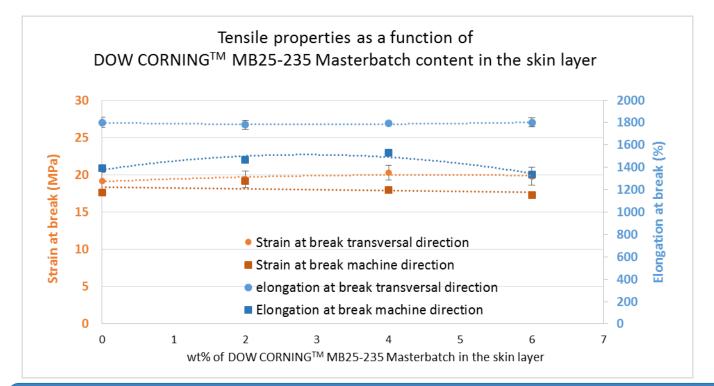
Céline Chevallier, PhD

Dynamic and Static COF Film/Metal



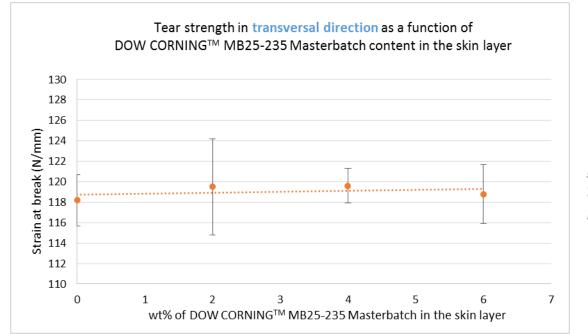
<u>NB:</u> The Film/film COF is higher than reference **BUT** Film/Metal COF is lower than reference

The silicone additive shows lower COF than conventional solutions


Céline Chevallier, PhD

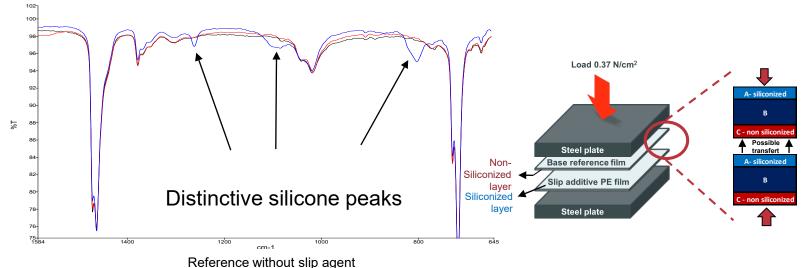
Dynamic COF After 4 Months of Ageing

Film/Film COF remains stable after 4 months of ageing at 23°C


Mechanical Properties Tensile test

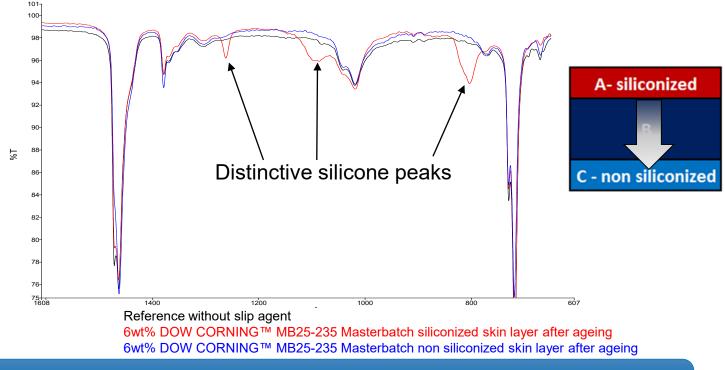
The addition of DOW CORNING[™] MB25-035 silicone Masterbatch does not affect tensile properties of the film

Céline Chevallier, PhD


Mechanical Properties Tear strength test

<u>NB:</u> Impossible to run the tests in the longitudinal or machine direction

The addition of DOW CORNING[™] MB25-035 silicone Masterbatch does not affect tear strength of the film


Transfer Analysis Contact transfer (under weight at 23°C for 2 months)

6wt% DOW CORNING[™] MB25-235 Masterbatch non siliconized skin layer after 2 months under weight 6wt% DOW CORNING[™] MB25-235 Masterbatch siliconized skin layer

The silicone does not transfer by contact and under weight to the opposite non siliconized layer; this layer remaining printable and/or metallizable even at high loadings

Transfer Analysis Intra-layer transfer (after ageing at 60°C for 1 months)

The silicone does not migrate through layers, even after ageing at 60°C for 1 month and even at high loadings.

Conclusions

Friction measurement

- ✤ Film/Film COF: An optimum level is achieved at 2 to 4 wt% of DOW CORNING[™] MB25-235 Masterbatch around 0.22
- Film/Metal COF: The silicone additive shows lower COF than organic solutions
- <u>NB:</u> with silicone additive high COF film/film does not mean high COF film/metal.
 We recommend customer measure film/metal COF when this is the desired outcome of using slip agent

Mechanical properties

✤ The silicone additive does not impact any mechanical property

Transfer

- ✤ The silicone does not transfer against a non siliconized layer by contact
- ✤ The silicone does not migrate through layer with time and temperature
- Does not affect printing and/or metalization

Cost

The silicone additive is designed to be used at low dosage (2-4 wt%) and to be introduced in the desired skin layer only.

Contacts

Technical team

Céline Chevallier, PhD Product Development Engineer Multibase SA DowDupont Specialty Products Division

T: +33 47667 1240 celine.chevallier@dow.com Patrick Prêle *R&D engineer & Technical support- MB technology* Multibase SA DowDupont Specialty Products Division T: +33 47667 1246 patrick.prele@dow.com Xavier Martinez Lab technician Multibase SA, DowDupont Specialty Products Division T: +33 47667 1241 x.martinez@dow.com

Sales and business team

Jean-Pierre Patte Senior Sales Developer Multibase SA DowDupont Specialty Products Division

T: +33 47667 1226 jean-pierre.patte@dow.com Barbara Meunier *Application Development Specialist* Multibase SA DowDupont Specialty Products Division

T: +33 47667 1228 barbara.meunier@dow.com

Our vision Transforming industries and improving lives through material science

DuPont Transportation & Advanced Polymers (T&AP), a DowDuPont Specialty Products Division business, delivers a broad range of technology-based products and solutions to the transportation, electronics, industrial and consumer markets. T&AP partners with customers to drive innovation by utilizing its expertise and knowledge in polymer and materials science. T&AP works with customers throughout the value chain to enable material systems solutions for demanding applications and environments. For additional information about DuPont Transportation & Advanced Polymers, visit <u>plastics.dupont.com</u>.

Thank You

©2018 DowDuPont, The Dow Chemical Company, DuPont. All rights reserved. ®™ Trademark of DowDuPont, The Dow Chemical Company, E.I. du Pont de Nemours and Company, or their affiliates.