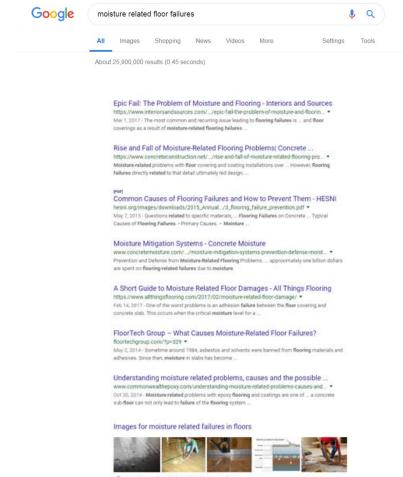
Create a Better Moisture Shield and Prevent Floor Failures

<u>Shafiq Fazel</u> and Shiying Zheng Evonik Corporation

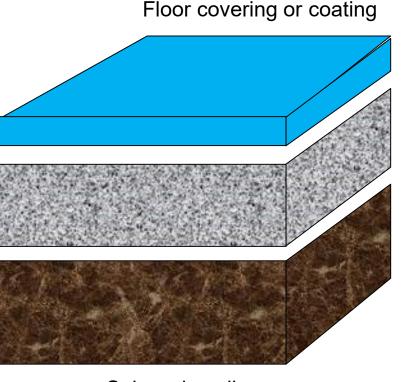


- Moisture related floor failures
- Moisture mitigation techniques
- Why use moisture vapor barriers
- Benefits of new Innovative Curing Agents for Moisture Vapor Barrier Systems
- Performance results
- Summary

What Problem are we trying to solve?

- Moisture related problems with <u>floor coverings and coatings</u> applied over <u>concrete</u> slabs accounts for <u>hundreds of millions of dollars annually</u>.
 - Floor failures
 Blisters in coatings
 Disbondment of tiles
 Wet floor safety
 Mold/mildew growth
 Cost of failure to applicators
 Remove and rebuild
 Liability

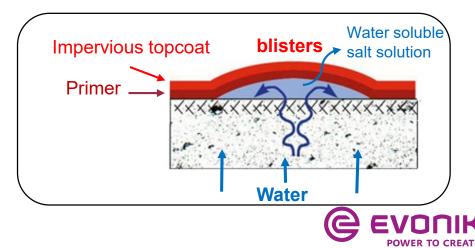
More images for moisture related failures in floors


port imanes

Concrete and Moisture

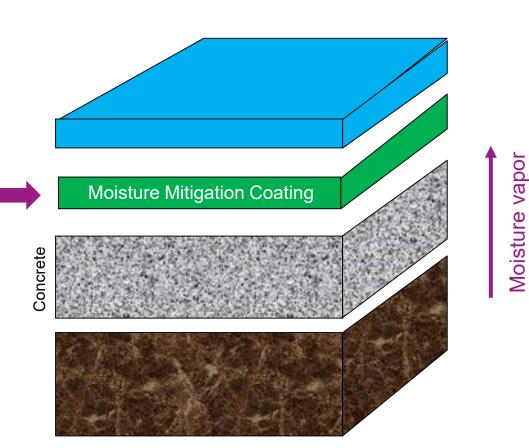
- Moisture Source
 - Ground/soil
 - Concrete
- Concrete composition
 - Air / Porosity ~1-7%
 - Water ~ 12 -16%
 - Cement ~ 10-15%
 - Fine Aggregate
 - Sand ~ 30-80%

Concrete


- Coarse Aggregate
 - Stone ~ 0-50%

- Moisture vapor drivers
 - Hydrostatic Pressure = Upward water pressure when concrete is placed below ground (water) level
 - Osmotic cell = A pressurebuild generated by concentration gradient over membrane
 - Required for osmotic cell:
 - Water pressure (capillary osmosis)
 - Semi-permeable membrane (concrete)

Moisture vapor


- Soluble component(s) (salts)

Moisture Mitigation Technique

Moisture Vapor Permeable ("Breathable")

- Allows moisture vapor from concrete/ground soil to diffuse through
- Very good technique for concrete with high potential of osmotic pressure
- Subsequent layers (coating & floor covering) need to be "breathable" to avoid failures
- Moisture Vapor Barrier ("Blocking")
 - Restricts moisture vapor from concrete and/or ground soil to diffuse through
 - Very good technique when subsequent layers are non-breathable (applies to most flooring systems)
 - Seamless Flooring (ex. Broadcast, Terrazzo etc.)
 - Floor coverings (ex. Tiles, Carpet, Laminate etc.)


Floor covering or coating

Subgrade soil

Moisture Vapor Barrier Definitions

- A standard practice established in 2013 for two-component resin based membrane-forming moisture mitigation systems for use under resilient floor coverings (ASTM F3010)
 - Outlines performance and application of liquid applied moisture vapor reduction systems under floor coverings
 - The ability of a material to suppress the diffusion of moisture vapor is measured in units known as "perms" or permeability
 - Specifies moisture vapor permeance of < 0.1 perms (ASTM E-96 13)
 - The International residential code Class I moisture vapor retarder : <0.1 perms (grains·h⁻¹·ft⁻²·inHg⁻¹)

Moisture vapor permeance

MVP = MVT/ vapor pressure differential across sample

Market Trends Drive New Product Innovations

Better products: Enhanced performance Improved adhesion Better mechanical property

Improved chemical resistance Enhanced UV- resistance Improved color stability

Improved productivity: Fast turn-around time Fast cure at low temperature Wider application window

Reduced downtime

Simplified handling/application Less surface preparation Simplified maintenance

Eco-friendly: Environmentally and user friendly

Low or plasticizer free Low VOC, low emission Improved worker safety "green" or sustainable products

New Innovative Curing Agent Development for Epoxy Coatings

Thermoset Epoxy Coatings = Epoxy Resin (Part A) + Curing Agent or Hardener (Part B)

Current Technology

- Diamine (adducted) + Plasticizer
 - Bisphenol A resin IPD Benzyl alcohol

Advantages

- Complete conversion of epoxy/amine reaction
- Increase compatibility
- Disadvantages
 - Emission of benzyl alcohol/other plasticizers
 - Increased moisture vapor transmission

New Technology

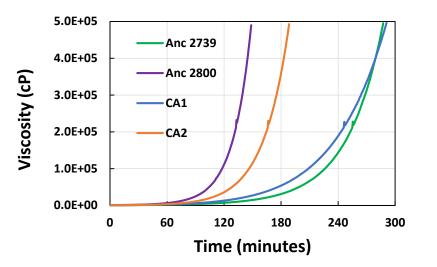
- Proprietary Diamine
 - Internally plasticized
 - Requires low to no plasticizers
- Advantages
 - Retains advantages of current technology
 - Low emissions
 - Improved moisture vapor barrier

New Curing Agents Based on Internal Plasticized Technology

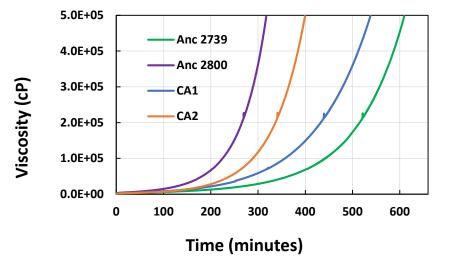
- Ancamine[®] 2739 and Ancamine[®] 2800: solvent free epoxy curing agent based on built-in, internal plasticized, non-emissive technology
 - Features: low emission, high conversion, tailored cure speed, excellent moisture vapor barrier
 - Benefits: emission compliant, fast turn-around time, and cost effective
- CA1 and CA2: benchmark curing agents having ~40% benzyl alcohol, high degree of conversion
 - CA1 for ambient cure

9

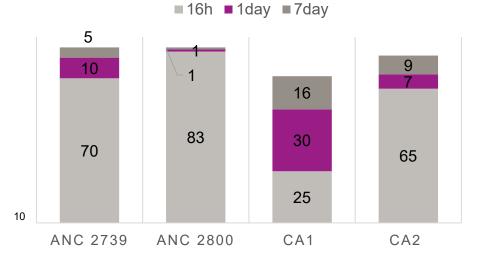
• CA2 for cure down to 10C

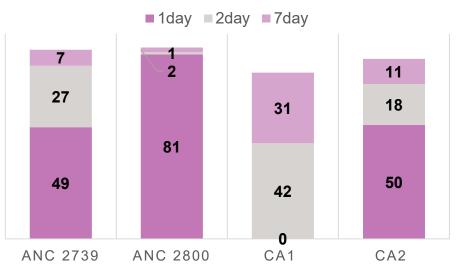

Ancamine [®] 2739	Ancamine [®] 2800	CA1	CA2	
95	84	115	95	
71	35	80	30	
350	400	400	190	
669	775	668	450	
Thin film set time (h) (BK phase 3)				
9.5	5.4	11	7.5	
17.5	10.8	20		
	95 71 350 669 Thin film set tin 9.5	71 35 350 400 669 775 Thin film set time (h) (BK phase 3) 9.5 5.4	95 84 115 71 35 80 350 400 400 669 775 668 Thin film set time (h) (BK phase 3) 11 9.5 5.4 11	

Cured with Epodil 748 reactive diluent diluted bisphenol A/F epoxy resin, EEW=195, viscosity 900 cPs.



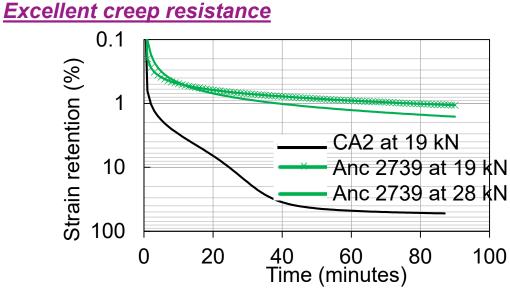
Anc 2739 and Anc 2800— Tailored Speed of Property Development

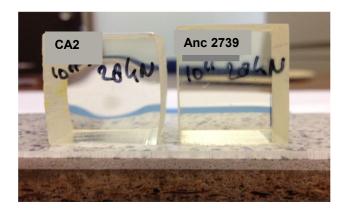

Viscosity build at 23C


Viscosity build at 10C

Shore D hardness build at 23C

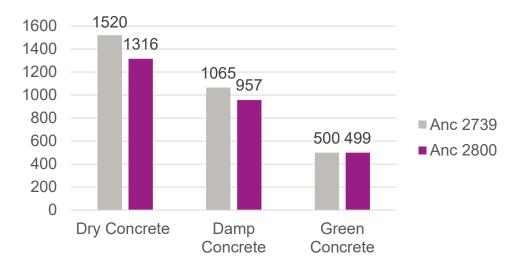

Shore D hardness build at 10C


Anc 2739 and Anc 2800 Possess Excellent Mechanical Properties

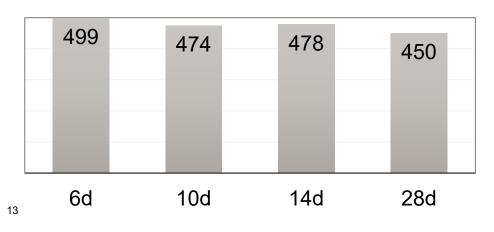

— High Compressive Strength and Excellent Creep Resistance

0				
0 2 4 6 8 1 Strain (%)	10 12 14			
Strain (%)				_
Curing agents	Anc	Anc	CA1	CA2
	2739	2800		
Compressive strength (MPa)	78	90	37	40
Compressive modulus (GPa)	2.1	2.3	1.1	1.3
Strain (%)	7.7	8.0	4.8	4.6

ASTM D695, clear castings, Cured with bisphenol A/F resin/ Epodil 748, EEW195, η 900 cPs.


Anc 2739 and Anc 2800 Starting Point Formulation and Basic Properties

Part A		Anc 2739	Anc 2800
Epoxy resin	BisA resin	80.0	80.0
Reactive Diluent	Epodil 748	10.0	10.0
Reactive Diluent	Epodi 749	10.0	10.0
Air Release (optional)	Silicone polymer	0.3	0.3
Part B			
Curing Agent		50	44
Total parts		155	144
Technical data			
Mix ratio A/B	By wt.	2/1	70/30
	By vol.	1.91	2.16
Mixture density (lbs/gal)		9.4	9.4
Mix viscosity (cP)		594	500
Gel time (minutes)		85	41



Anc 2739 and Anc 2800 Show Excellent Adhesion to Dry, Damp and Green Concrete

Adhesion to concrete (psi)*

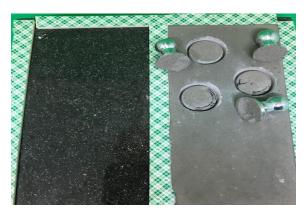
Anc 2800: Adhesion to green concrete (psi)*

* ASTM D7234 – All are bulk concrete failures

Concrete surface profile (International Concrete Repair Institute) – CSP3

Excellent Carbamation Resistance and Intercoat Adhesion

Carbamation resistance

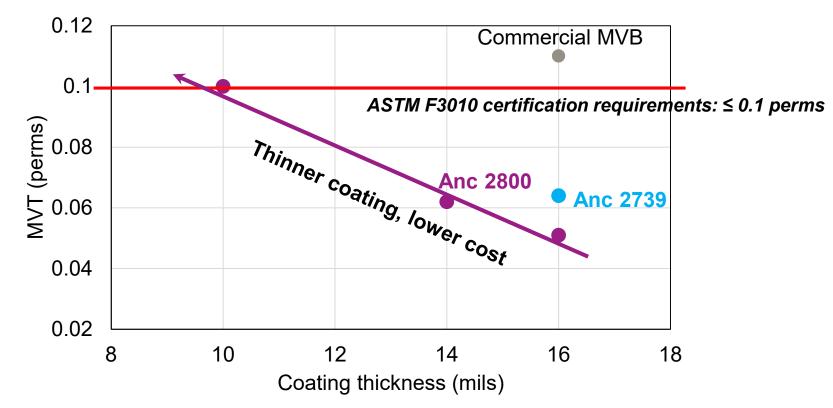

	Anc 2739	CA1
1d/2d/7d at 23C	5/5/5	4/4/4
1d/2d/7d at 10C	3/4/5	3/4/4/

[#] Carbamation resistance following wet patch method (ISO 2812), Scale 1-5 (5=best)

Intercoat adhesion

Primer	Anc 2739	Anc 2800		
Topcoat: aliphatic polyurea ¹				
Topcoated at 4 hrs	MVB not cured	5A		
Topcoated at 24 hrs	5A	5A		
Topcoat: Cementitious Overlay ²				
Topcoated at 6 hrs	MVB not cured	299 psi		
Topcoated at 24 hrs	261 psi	314 psi		

Anc 2739


Cementitious overlay on Anc 2739

¹ASTM D3359: 5A/Best (no peeling or removal of coating), 1A/Worst (complete removal coating); ²ASTM D7234, All samples show overlay cohesive failure.

Faster Turn-Around Time, and Cost Effective

- Both Anc 2739 and Anc 2800 show excellent moisture barrier property as thin coating
- Anc 2800 can be applied 30-35% less to meet < 0.1 perms rating significant cost-in-use savings</p>

Testing done by independent lab for moisture vapor transmission (MVT), ASTM E-96

Anc 2739 and Anc 2800 are Excellent Moisture Vapor Barrier Choices

 Excellent moisture vapor barrier under seamless thermoset flooring systems (e.g. epoxy terrazzo, epoxy/polyurea broadcast) and floor coverings (e.g. tile, vinyl, laminate, hardwood etc.)

Game changing curing agents

- High performance
- Environmental friendly
- Cost effective

Ancamine 2800

- Lower film thickness
- Faster drying time
- Good pot-life
- Very low emissions
- Excellent adhesion to concrete

Ancamine 2739

- Low viscosity
- Carbamation resistance
- Long pot-life
- Very low emissions
- Excellent adhesion to concrete
- LEED V4. Compliant

Faster

QUESTIONS? QUESTIONS?