Silicone Technology for plastomer skin layer used in PE films

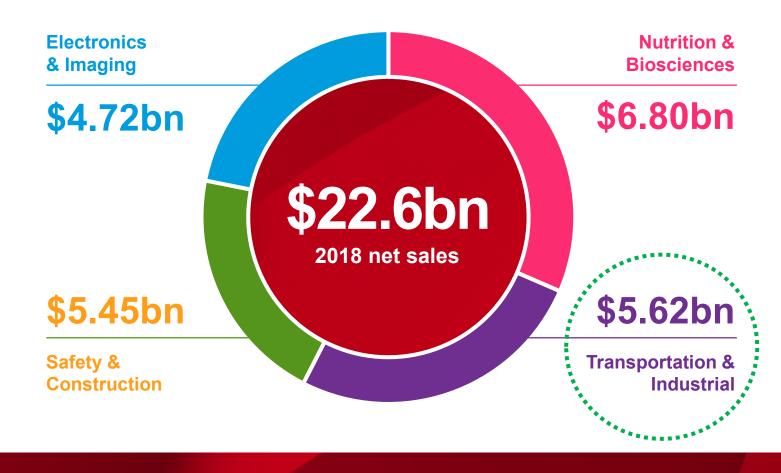
DOW CORNING™ AMB-12235 Masterbatch

Patrick Prêle, R&D and Technical Support engineer, Masterbatch Technology

UL Prospector Webinar – June 13, 2019

Today's agenda

- Welcome to a new DuPont
- Multibase transforming innovation
- Silicone masterbatch technology for PE blown film challenges
- Experimental set-ups
- Technical results
- Conclusions


Driving innovation for a diverse set of industries

Colleagues 200+ Manufacturing Sites

32,000+

70+ Countries

10+ Global R&D Centers

DuPont Transportation & Industrial Our solution space

Healthcare

Consumer

Global capability. Local solutions.

lnnovatio	n Centers					
Brazil) Japan			••• •••	•	
China	› Taiwan					
) India	Turkey					
→ Russia	United States:		••			
 Switzerland 	Silicon Valley, CA		• • •			
	→ Troy, MI		•	,		
Major R&	D Centers					
> Brazil	Japan					
> China	> Taiwan				• • • • • • • • • •	
> France	> India	$\mathbf{\hat{\Theta}} \mathbf{\hat{\Theta}} \mathbf{\hat{\Theta}} \mathbf{\hat{\Theta}}$				
> Denmark	> United States:					
> Korea	Palo Alto, CA					
Germany	> Wilmington, DE			••		
> Netherlands	→ Marlborough, MA	4				•
> Switzerland	→ Midland, MI	••				

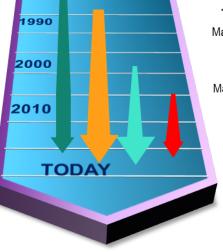
Multibase – transforming innovation

Daman, Mumbai - India

50/50 joint venture Paturle (steel) & Omya (fillers)

1980

2002 Acquisition by Dow Corning & introduction of siloxanes



DOW CORNING

2016 Integration in Dow 2018 DowDuPont merger

June 1, 2019 New DuPont

OUPONT

1988

Manufacturing expansion Copley USA 1996 Manufacturing expansion Daman, India

2010 Manufacturing expansion Zhangjiagang, China

A silicone-based technology solution to PE blown film challenges

DOW CORNING[™] AMB-12235 Masterbatch

Industry challenges – PE Blown Films

Ensure long-lasting low coefficient of friction (COF)

- Seamsless throughput
- High Productivity
- Consistent quality during post-process operation such as FFS

Our solution to address the challenge

- A stable long-term COF will ease logistics and storage, and during post production process (e.g. FFS)
- The low content needed allows a reduced impact on haze

Silicone masterbatch technology – features & benefits

DOW CORNING™ AMB-12235 Masterbatch main features

- Does not migrate, does not transfer
- Efficient at low dosage, introduced in one skin layer only
- Can be used through conventional dosing equipment

Combining antiblock and slip agent allows

- Synergetic effects due to right combination and amounts of each active ingredients
- Ease supply and handling

Easy to process

- Free-flowing pellets
- Can be used in conventional dosing equipments and with usual PE blown film processing parameters
- Typical recommended level of use: 4-6wt%

Experimental Set-ups

Blown Film Fabrication Parameters

COF Measurements

Mechanical Properties

Transfer Test Description

Film Structures for blown film extrusion

Films with organic slip additive – organic reference

Α	15µm	Plastomer (d=0.904 - MFI 1g/10 min) +1% PPA Formulated with antiblock and slip agent		
B, C, D	15µm	LDPE - d=0.921 - MFI 1.9g/10min		
E	20µm	LLDPE/LDPE 60/40 (MFI 2/1.9g/10min) + 1% PPA + 1% masterbatch silica as antibloc		

Layer A: Skin layer in which slip properties are desired

Layer B, C, D: Core layer

Layer E: Opposite skin layer, potentially Corona-treated to be metallized or printed

PPA: Polymer processing aid: additive used to avoid shark skin on the film and ease the process

Film Structures for blown film extrusion

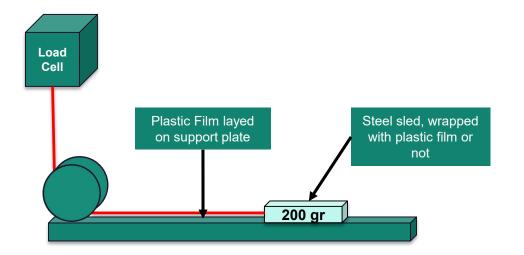
Films with silicone additive – DOW CORNING[™] AMB-12235 Masterbatch

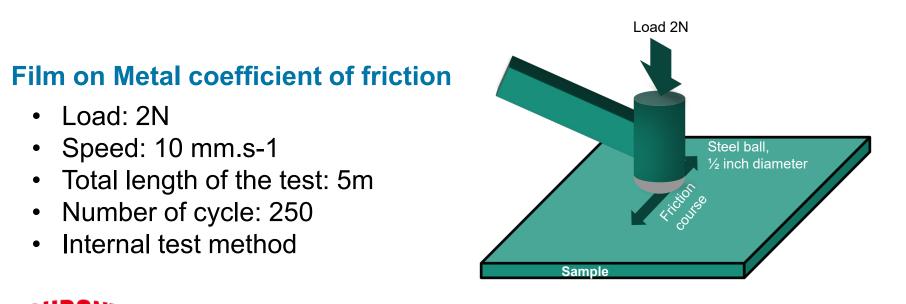
Α	15µm	Plastomer - d=0.902 - MFI 1.1g/10 min - No PPA, No antiblock, No slip agent +2, 4 and 6wt% DOW CORNING ™ AMB-12235			
B, C, D	15µm	LDPE - d=0.921 - MFI 1.9g/10min			
E	20µm	LLDPE/LDPE 60/40 (MFI 2/1.9g/10min) + 1% PPA + 1% masterbatch silica as antibloc			

Layer A: Skin layer in which slip properties are desired

Layer B, C, D: Core layer

Layer E: Opposite skin layer, potentially Corona-treated to be metallized or printed

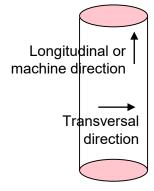

It is to be noted that DOW CORNING[™] AMB-12235 <u>played the role of PPA</u> during blown film extrusion (thus, traditional PPAs could be removed of the formulation).


Tests Parameters

Coefficient of friction

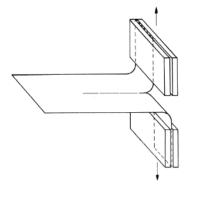
Zwick coefficient of friction, following ASTM D1894

- 254 mm x 127 mm 200g Sled
- Running speed: 150 mm.min⁻¹
- Running length: 60 mm
- Film on film CoF measurements were made siliconized layer against siliconized layer.



Tests Parameters

Mechanical Properties

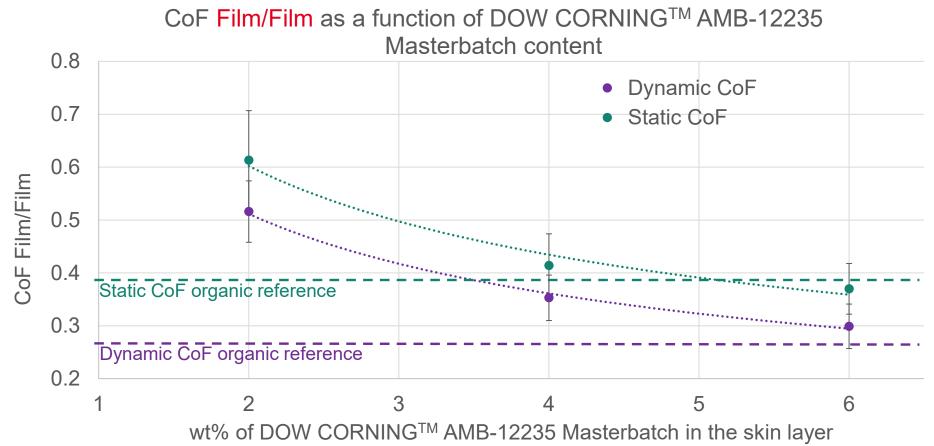

Tensile: Zwick equipment, following EN 13655:2002

- Running speed: 500 mm.min⁻¹
- Samples: 10mm width strips
- Gap between grips: 50mm

Tear test: Zwick equipment, following ISO 6383-1:2015

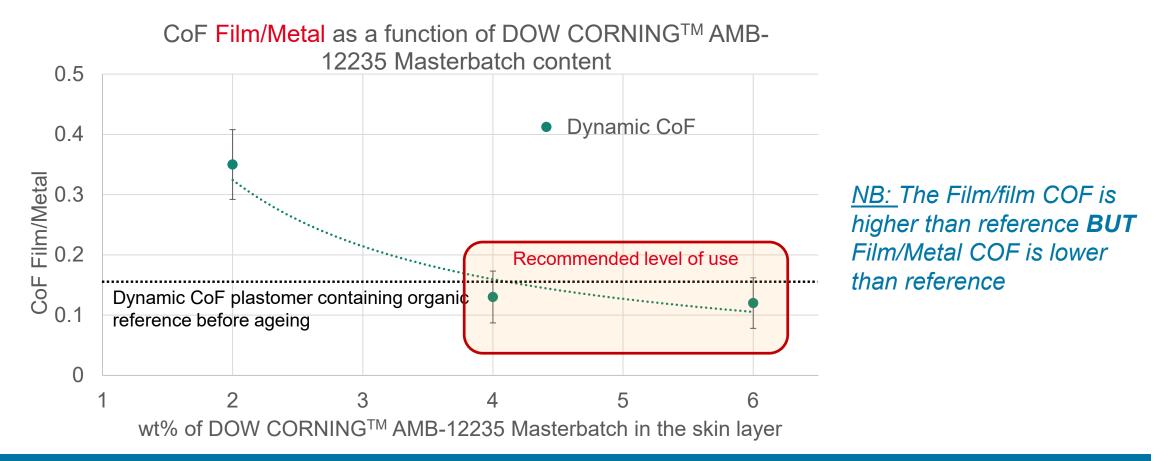
• Speed: 200mm/min

Technical results

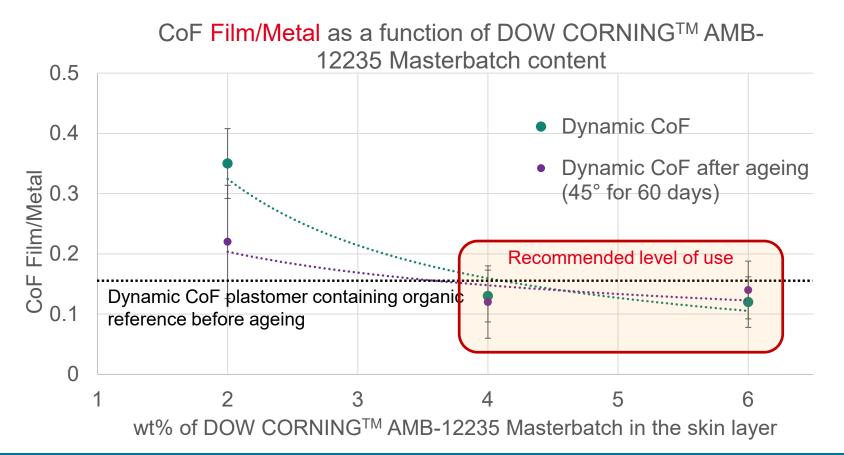

COF Comparison

Mechanical Properties

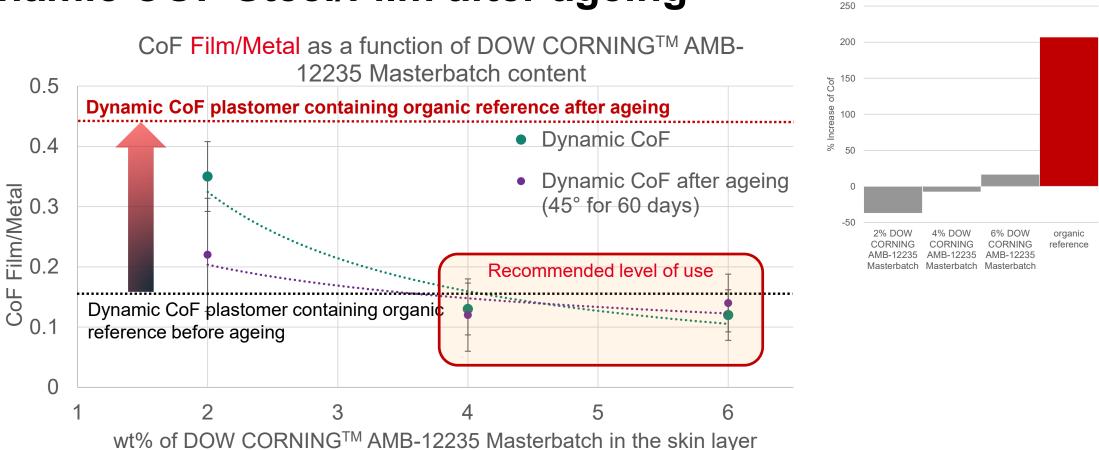
Transfer Analysis


Dynamic and Static COF Film/Film

An optimum is achieved at 4 to 6 wt% of DOW CORNING[™] AMB-12235 Masterbatch with a CoF Film/Film around 0.35

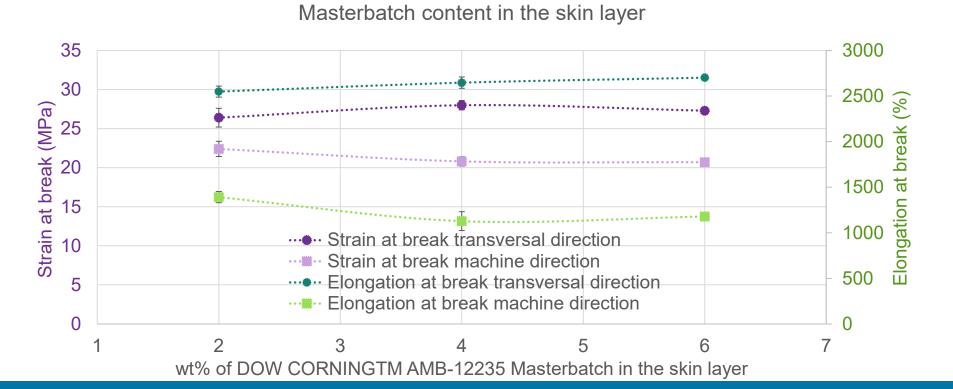

Dynamic COF Steel/Film (ball on film)

The film using DOW CORNING[™] AMB-12235 is showing lower CoF than reference since 4wt% introduction


Dynamic COF Steel/Film after ageing

The CoF Film over Metal remains stable after ageing at 45°C for 2 months, while with the organic reference, it increases of 200%

Dynamic COF Steel/Film after ageing

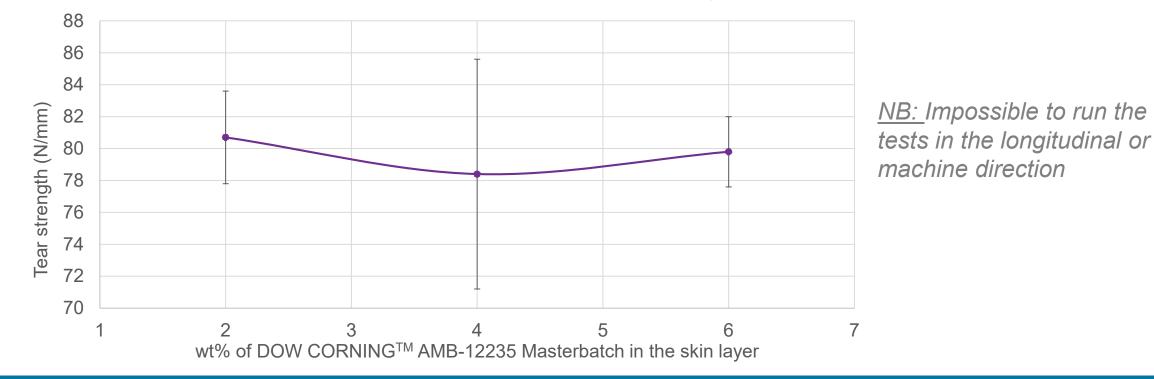

Film/Metal CoF increase after ageing (45° for 60 days) in %

The CoF Film over Metal remains stable after ageing at 45°C for 2 months, while with the organic reference, it increases of 200%

Mechanical Properties

Tensile tests

Tensile properties as a function of DOW CORNING[™] AMB-12235


The addition of DOW CORNING[™] AMB-12235 Masterbatch does not affect tensile properties of the film

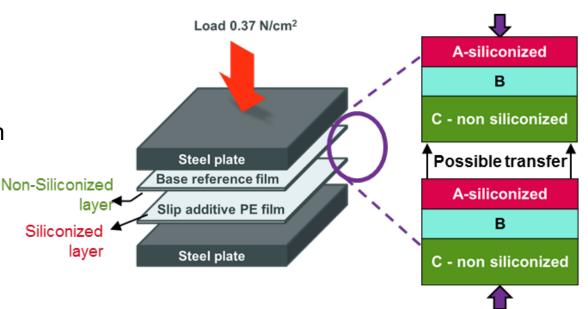
Mechanical Properties

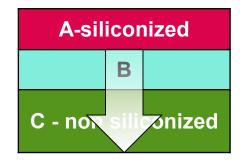
Tear Strength Test

Tear strength in **transversal direction** as a function of DOW CORNING[™] AMB-12235 Masterbatch content in the skin layer

The addition of DOW CORNING[™] AMB-12235 Masterbatch does not affect tear strength of the film

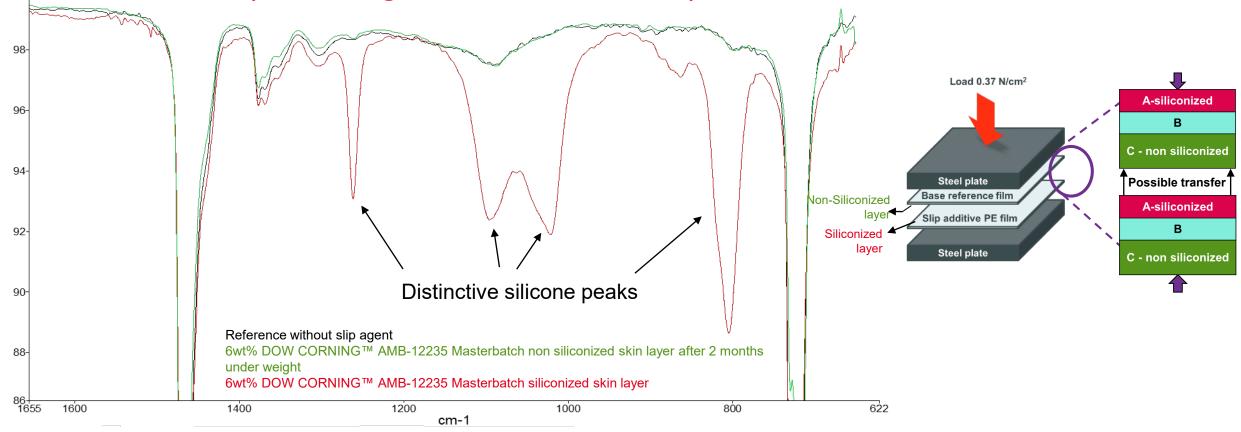
Tests Parameters


Transfer study


Contact migration test (after 2 months at 23°C under weight)

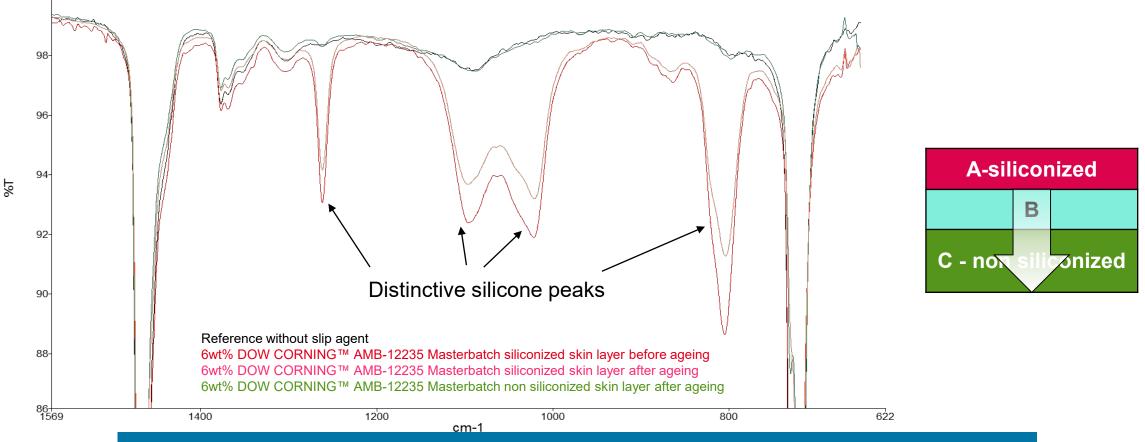
- Simulation of winding pressure by pressing films between metallic plates.
- Base reference PE film (containing no slip additive) and SiMB treated PE film are laid together with a 0.37N/cm² pressure. (weight 15 KG/ 20*20 cm)
- After exposure, IR ATR spectroscopy is conducted to track Si migration

Intra-layer migration test (after 1 month at 60°C)


- The samples are stored for 1 month in an oven at 60°C to accelerate ageing and degradation
- Layer C (non-siliconized skin layer) is IR tested to see the presence of silicone or amide, coming from the opposite skin layer and migrating through all layers.

Transfer Analysis

Contact transfer (under weight at 23°C for 2 months)


The silicone does not transfer by contact and under weight to the opposite non siliconized layer; this layer remaining printable and/or metallizable event at high loadings

%T

Transfer Analysis

Intra-layer transfer (after ageing at 60°C for 1 month)

The silicone does not migrate through layers, even after ageing at 60°C for 1 month and even at high loadings.

Conclusions: Silicone Technology for plastomer skin layer used in PE films

Process

PPA can be removed from formulation

Friction

- ✤ Film/Film COF: An optimum level is achieved at 4 to 6 wt% of DOW CORNING[™] AMB-12235 Masterbatch around 0.35
- Film/Metal COF: The silicone additive shows lower COF than organic solutions
- <u>NB:</u> with silicone additive high COF film/film does not mean high COF film/metal.
 We recommend customer measure film/metal COF when this is the desired outcome of using slip agent
 Mechanical properties
 - The silicone additive does not impact any mechanical property

Transfer

- The silicone does not transfer against a non siliconized layer by contact
- The silicone does not migrate through layer with time and temperature
- Does not affect printing and/or metalization

Cost

✤ The silicone additive is designed to be used at low dosage (4-6 wt%) and to be introduced in the desired skin layer only.

Our slip additives for films

	Resin	Typical film thickness	Product	Usage recommendation
PE blown	PE – Density 0.9-0.902	13µm	AMB-12235 (*)	4-6%
films	LDPE/LLDPE Density> 0.91	15 µm	MB25-235	2-4%
BOPP films	Terpolymer	1-2 µm	HMB-6301 (*) contains anti-bloc	2-3%

DOW CORNING[™] AMB-12235, DOW CORNING[™] MB25-235, DOW CORNING[™] HMB-6301 are:

- food-compliant globally

- Free flowing pellets which can be used with conventional thermoplastic equipment/conditions

A question?

Technology

Patrick Prêle *R&D engineer & Technical support- MB technology* Multibase SA DuPont T: +33 47667 1246 patrick.prele@dow.com

Sales & Business

Barbara Meunier *Application Development Specialist* Multibase SA DuPont T: +33 47667 1228 <u>barbara.meunier@dow.com</u>

Copyright © 2019 DuPont de Nemours, Inc. All rights reserved. DuPont[™], the DuPont Oval Logo, and all products, unless otherwise noted, denoted with [™], [™] or [®] are trademarks, service marks or registered trademarks of affiliates of DuPont de Nemours, Inc.

Nothing contained herein shall be construed as a representation that any recommendations, use or resale of the product or process described herein is permitted and complies with the rules or regulations of any countries, regions, localities, etc., or does not infringe upon patents or other intellectual property rights of third parties.

The information provided herein is based on data DuPont believes to be reliable, to the best of its knowledge and is provided at the request of and without charge to our customers. Accordingly, DuPont does not guarantee or warrant such information and assumes no liability for its use. If this product literature is translated, the original English version will control and DuPont hereby disclaims responsibility for any errors caused by translation. This document is subject to change without further notice.