Staying Current: Everything You Need to Know About Electrical Properties for Plastic Design

BASF Performance Materials

BASF We create chemistry

About the Presenters

Inga Balke

Senior Applications Development Engineer, BASF

Inga is a Senior Applications Development Engineer and has been working at BASF in the polymer industry for over 25 years. She has been focused on testing, agency requirements and design for the majority of her career. She has helped customers design with polymers in many different industries including electrical, HVAC, furniture, appliance, power tool and industrial applications. She attended Texas A&M University for both BS and MS mechanical engineering with a focus on mechanics of materials.

Dalia Naamani-Goldman

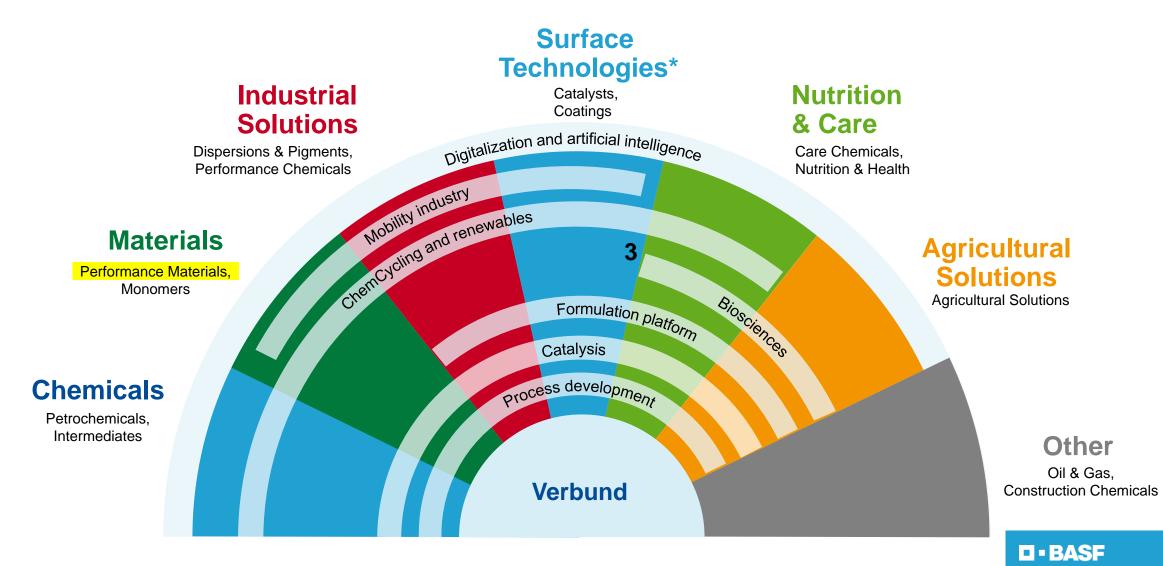
Market Segment Manager, Transportation, BASF

Dalia is the Electrical, Electronic, and e-Mobility Market Segment Manager with BASF's Performance Materials business where she is responsible for electric and autonomous vehicle materials and applications. Prior to BASF, Dalia worked for 5 years as a business consultant.

She received her B.S. from Northwestern University and MBA from University of Michigan.

Steve Losier

Market Segment Manager, Industrial E&E, BASF


Steve is the Industrial Electrical and Electronic Market Segment Manager with BASF's Performance Materials business since August 2019. He has been with BASF for 6 years in Supply Chain and Product Management roles. Prior to BASF, he had 10 years in Supply Chain Management experience. Steve is currently supporting business growth in the Industrial E&E segment, through identifying market trends and coordinating development efforts.

He has a B.S. in Industrial Engineering from University of Windsor.

BASF: We Create Chemistry for a Sustainable Future

BASF is the world's leading chemical company

We create chemistry

3

BASF Performance Materials Product Portfolio

Polyurethanes

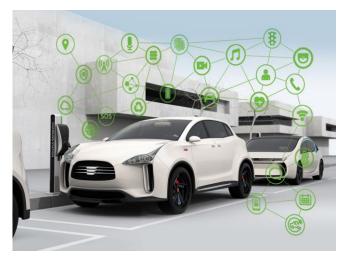
Cellasto®	Elastopan [®]
Elastocoat®	Elastopor®
Elastoflex®	Elastospray®
Elastofoam®	Elasturan®
Elastollan®	Infinergy®
Elastolit®	Slentex®

Engineering Plastics

Ultramid[®] PA6 Ultramid[®] PA66 Ultramid[®] PPA Ultradur[®] PBT Ultraform[®] POM

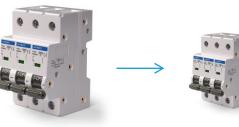
Specialty Plastics

ecovio®Ultrason® PES, PSU, PPSUecoflex®Palusol®Basotect®Neopolen®


AGENDA

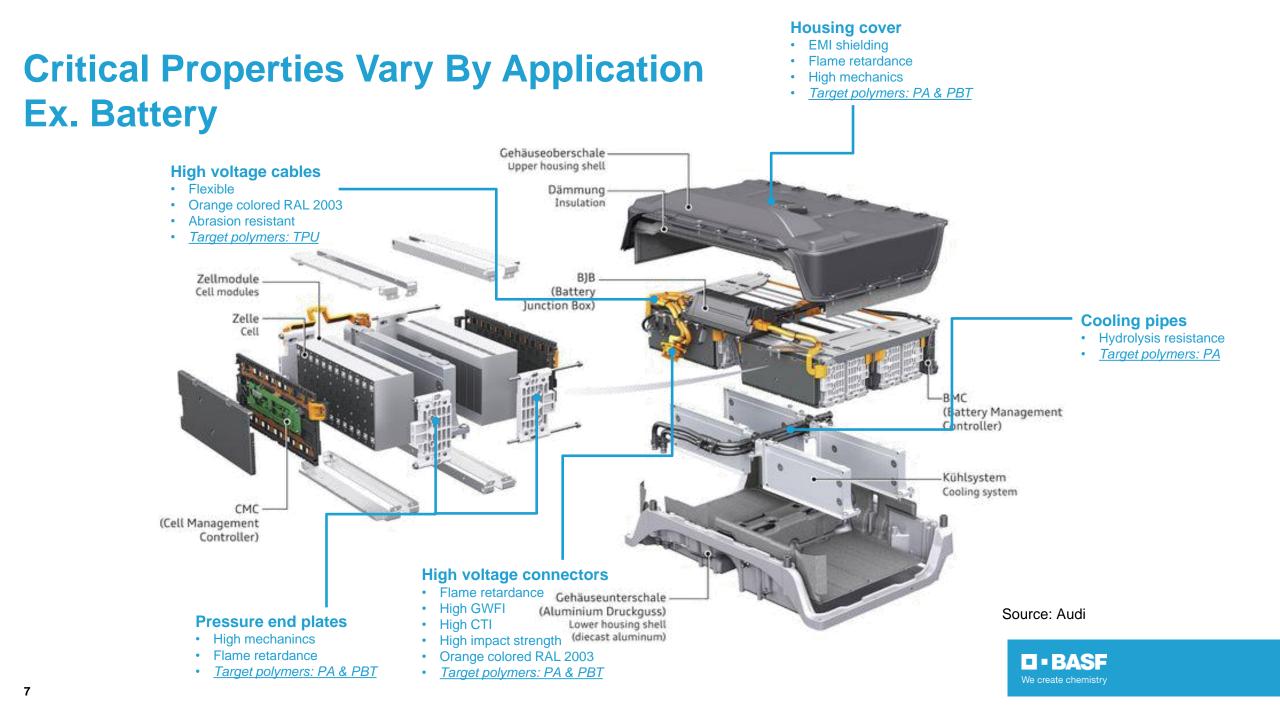
- Changing electrical landscape
- Flammability and resistance to ignition
- Insulation and isolation (resistivity, tracking, and creepage)
- Electrical durability and use (dielectric breakdown and relative permittivity)
- Resistance to heat aging

What Is Driving Interest in Electrical Properties of Polymers?



Electric Vehicles: Plastics are used as insulators, isolators and housings for components that carry current such as hybrid and battery electric vehicles, connectors, modules, circuit breakers, and switches

Autonomous Vehicles: Demands on the performance of the polymer keep increasing as new technology develops (relative permittivity is a major concern for autonomous systems)



Harsh Environments: Humidity, harsh chemicals, and high temperatures can change the behavior of polymers

Miniaturization: Small electrical devices see greater heat rise; thinwalled parts pose manufacturing challenges

Decoding the UL Yellow Card

Ultradur® B4450 G5 HR (non-halogenated FR PBT)

PROSPECTOR® View additional material	CLICK TO information including performance data	Prospector	ormation presented on the UL Pros makes substantial efforts to assure alues and strongly encourages that	the accuracy of this dat	ta. However, UL Prospe	ector assumes no resp	onsibility for the data
Component - Plast	ics						E41871
Guide Information							
BASF SE							
Performance Material	s Europe, E-PME/NQ - H201,	Ludwigshafen 67056 E)E				
B4450 G5 HR (t) Polybutylene Terep) ohthalate (PBT) "Ultradur"	, furnished as pellets	5				
	Min. Thk	Flame			<u>RTI</u>	<u>RTI</u>	<u>RTI</u>
<u>Color</u>	<u>(mm)</u>	<u>Class</u>	<u>HWI</u>	<u>HAI</u>	Elec	<u>Imp</u>	<u>Str</u>
ALL	0.40	V-2	1	0	75	75	75
	0.75	V-2	1	0	140	140	140
	1.5	V-0	1	0	140	140	140
	2.0	V-0, 5VA	1	0	140	140	140
	3.0	V-0, 5VA	0	0	140	140	140
Com	parative Tracking Index (C	(TI): 0	Inclined P	lane Tracking	(IPT) kV: 1		
	Dielectric Strength (kV/m	nm): 26	Volume R	esistivity (10 ^x o	hm-cm): -		
High-Voltag	e Arc Tracking Rate (HV	(R): 0	High Volt, Low Cu	rrent Arc Resis	s (D495): 5		

(t) - May be followed by the letters LS and a color code indicating laser sensitive coloring.

Dimensional Stability (%): -

ANSI/UL 94 small-scale test data does not pertain to building materials, furnishings and related contents. ANSI/UL 94 small-scale test data is intended solely for determining the flammability of plastic materials used in the components and parts of end-product devices and appliances, where the acceptability of the combination is determined by UL.

Report Date: 2002-04-11 Last Revised: 2019-05-13

© 2019 UL LLC

D - BASE We create chemistry

Flammability

Basic material response to thermal and electrical sources of combustion

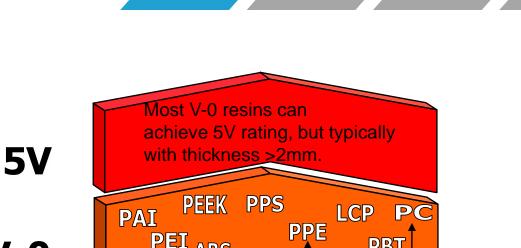
Why It Matters

Not all materials behave in the same way depending on additives and responses to combustion (i.e. selfextinguishing)

Need to understand risks of using a given material

Flammability of Polymers

Resistance to Ignition Insulation Tracking Resistance Aging


- Standard tests developed by UL, CSA, and ISO/IEC
- Additives can improve behavior by
 - Increasing ignition temperature
 - Reducing burn rate
 - Reduce flame spread
 - Reduce smoke emission, toxicity or density
- Self-extinguishing plastics
 - Limiting Oxygen Index (LOI)
 - LOI >21% (greater than standard air) for selfextinguishing (>28% with safety factor)

UL Flame Ratings Explained

- Flame ratings per UL 94:
 - HB horizontal burn (lowest rating)
 - V-2 vertical burn (short time), but flaming drip
 - V-0 vertical burn (very short time), no flaming drips
 - 5V-A highest rating no burn through

Insulation

Resistance

to Ignition

V-0 V-1 V-2 HB

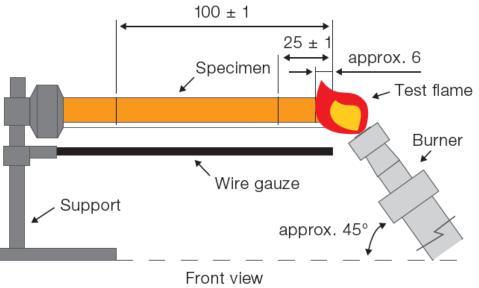
Thermal

Aging

Tracking

Resistance

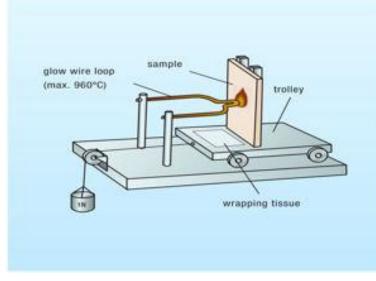
Flame Retardance Testing Set-up


Flame Propagation (UL94)

UL94 V Specimen Test flame ▲ 20 ± 2 ‡10 ± 1↓ Support ~ Burner 300 ± 10 Support Cotton approx. 50

max. 6

UL94 HB

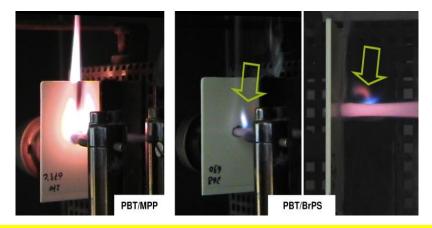


Glow Wire Testing (GWIT & GWFI)

Resistance Insulation Tracking Thermal Aging

IEC 60335 for appliance and other industry

- Temperature of the wire is clearly controlled and wire is kept in contact with the plaque.
- Strict requirements for electrical components for unattended appliances



Glow Wire Flammability Index (GWFI):

- Afterburning time: < 30 s
- Test duration: 60 s

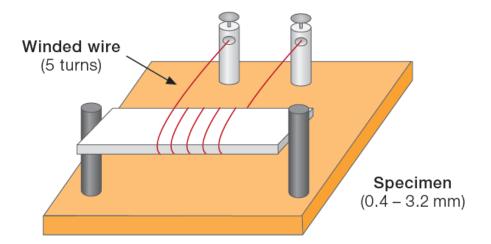
Glow Wire Ignition Temperature (GWIT):

■ Flame: < 5 s

VDE Approved BASF Grades (IEC 60335 and 60695)

Petra [®] 130 FR	PET
Ultramid [®] A3U40G5, A3K R01, C3U, B3U50G6	PA
Ultradur [®] B 4441 G5, B4520	PBT

Hot Wire Ignition (HWI)


 Resistance wire is wrapped around plastic and energized electrically for a specified time. Longer time is a better rating – value of 0 is highest offered by UL (120 seconds or longer).

Weakness in testing:

 No control of temperature of the wire – replaced by glow wire in many cases.

PLC Class
0
1
2
3
4
5

Hot Wire Ignition Test (HWI)

Exposure Time before ignition from electrified wire

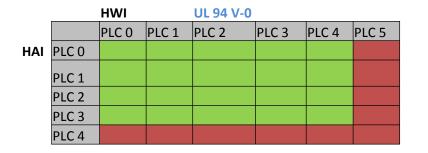
High Current Arc Ignition (HAI)

Source: Underwriters Laboratories Inc.®

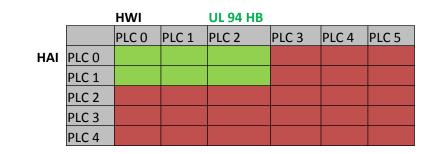
Number of arcs (NA)	PLC Class
120 ≤ NA	0
60 ≤ NA < 120	1
30 ≤ NA < 60	2
15 ≤ NA < 30	3
0 ≤ NA < 15	4

High Current Arc Ignition (HAI)

Number of arcs withstood before ignition


Defined as the number of arc rupture exposures necessary to ignite the material

Again 0 is best rating offered by UL and corresponds to 120 arcs without burning


High Performing BASF Grades (values PLC 0)

Ultradur[®] B4450 G5 PBT Ultramid[®] 66 H2 G/25-V0 KB1 PA Ultramid[®] T KR 4340G6 PPA

Part Design "Space" UL 746 C: Choosing Material for Live Electrical Compliance

		HWI		UL 94 V-2			
		PLC 0	PLC 1	PLC 2	PLC 3	PLC 4	PLC 5
HAI	PLC 0						
	PLC 1						
	PLC 2						
	PLC 3						
	PLC 4						

Flame ratings can shrink or enlarge your material options for a given application – i.e. higher flame rating will allow for lower performance against electrical line sources.

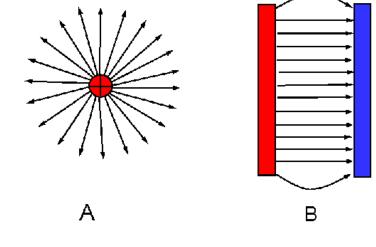
PLC: Performance level characteristic HWI: Hot wire ignition

HAI: High amperage ignition

Thermal

Aging

Insulation/ The ability to shield to protect Isolation

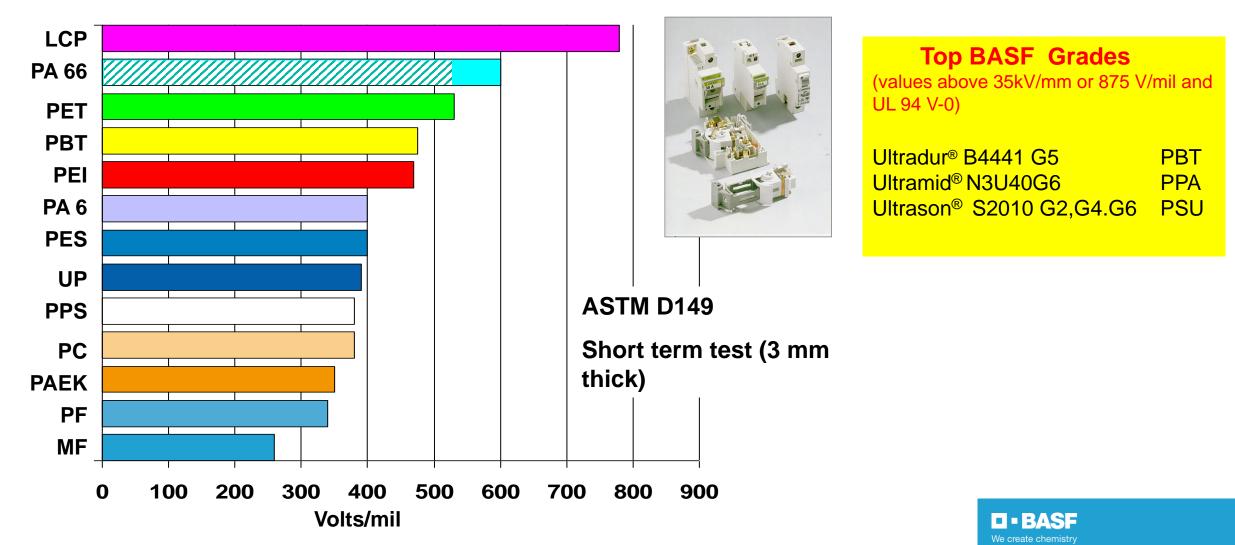

from electrical shock or interference (crosstalk, short or shunt, etc.)

Why It **Matters**

Circuits need to remain separate and function as designed - safety

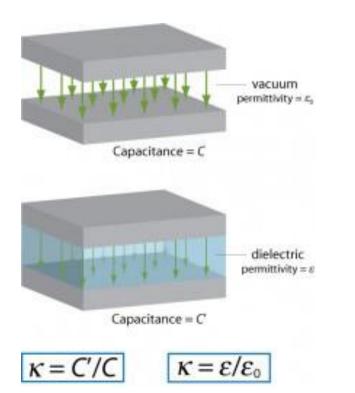
Dielectric Strength

- Maximum electric field strength that can be withstood without breakdown or failure of insulating properties
- Laminates (layers of insulation) are generally more effect than a single thicker sheet possibly due to the energy needed to destroy each surface



Dielectric Strength

Maximum electrical stress/thickness before breakdown



Resistance

to Ignition

Dielectric Constant/ Relative Permittivity

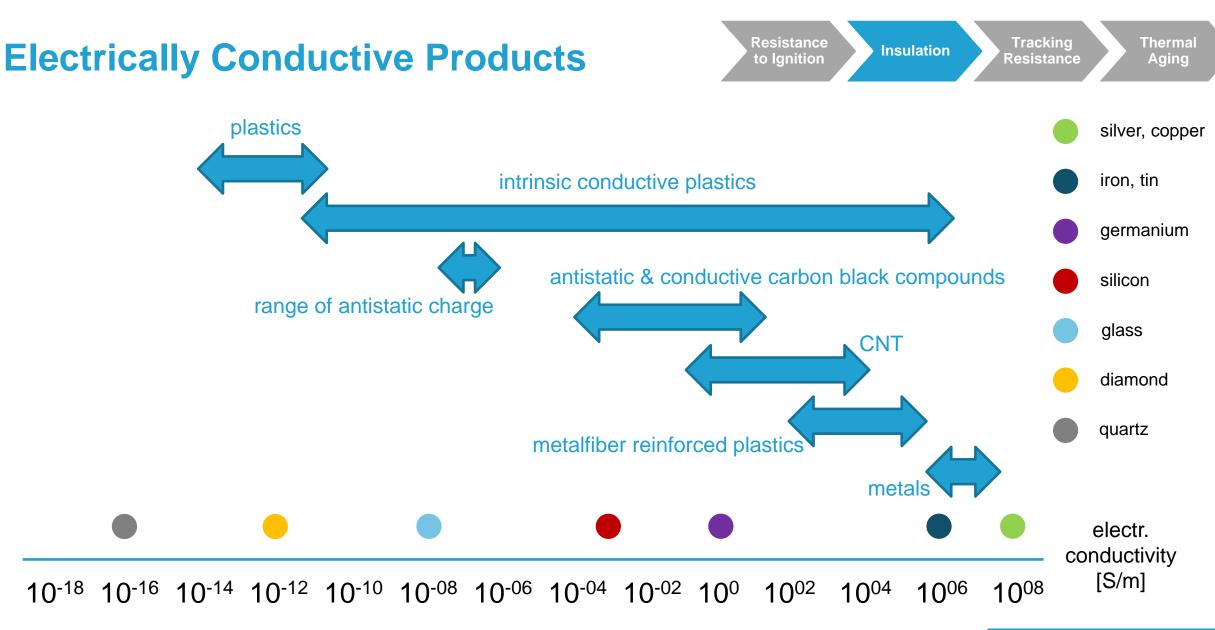
- Shows how effective a material is at allowing a capacitor to store charge. The larger the constant, the more charge can be stored.
 - Can also be negative when trying to dissipate charge (static).
 - Values for many plastics are generally in the 3-4 range.
- This is becoming much more important for items such as active safety or signal transmission and reception. Dissipation factor is a related property.

Insulation

Resistance

to Ignition

We create chemistry

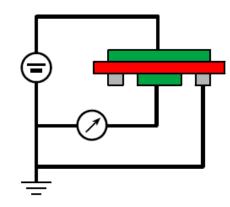

Tracking

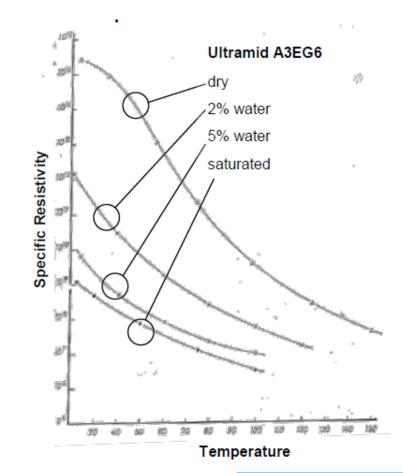
Resistance

Resistivity Effectiveness of insulation or isolation

Why It Matters

Resistivity changes with temperature and environment

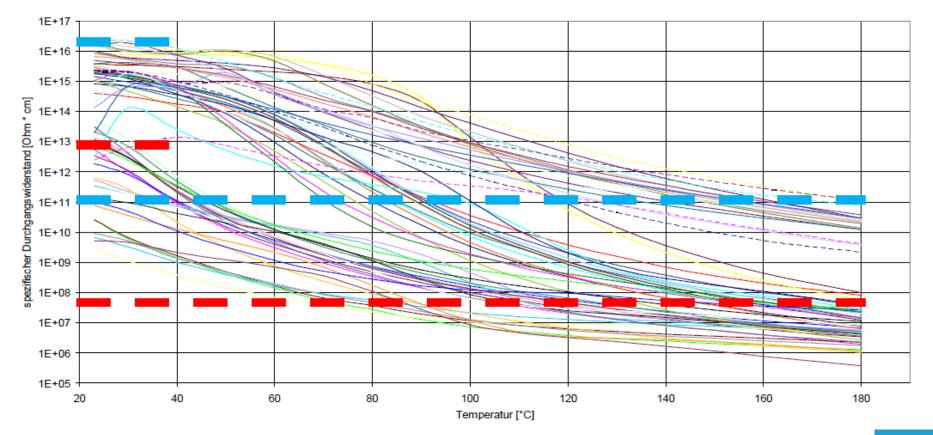

Specific Volume Resistance


- The **specific resistivity** of plastics:
 - Is measured according to IEC 60093
 - Depends on temperature and moisture uptake

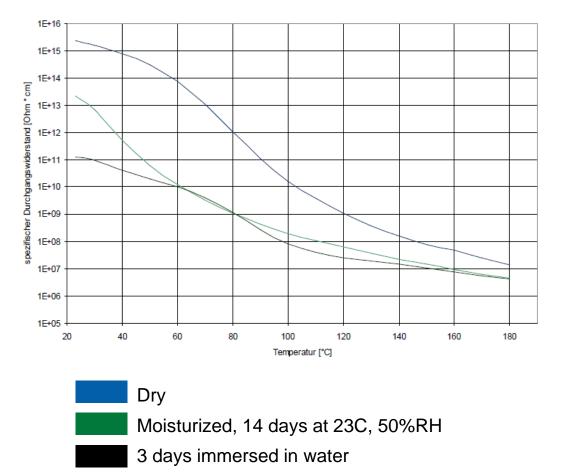
Specific Resistivity ρ acc. to IEC 60093

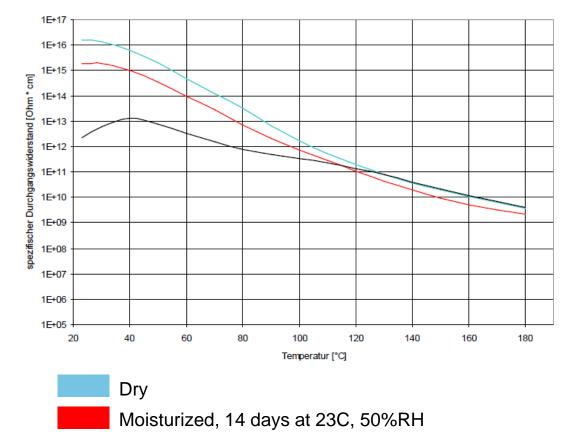
 $\rho = (R \cdot A) / d$

- $R \rightarrow Resistance measured$
- A → Area
- I → Thickness of sample



Specific Volume Resistance


Most PA and PBT compounds show drop of specific resistance (temp. rises to 180°C → resistance drops ~10E5, independent of GF/FR) while PBT starts at an elevated value


Specific Volume Resistance of BASF FR Materials

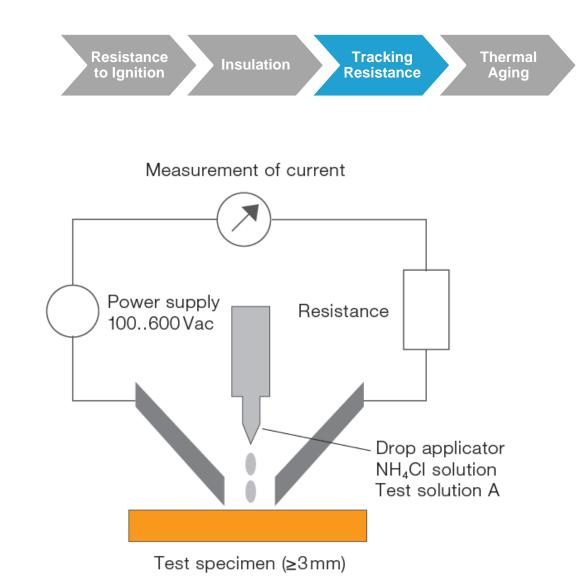
Ultramid A3UG5 PA66

Ultradur B4450 G5 PBT

3 days immersed in water

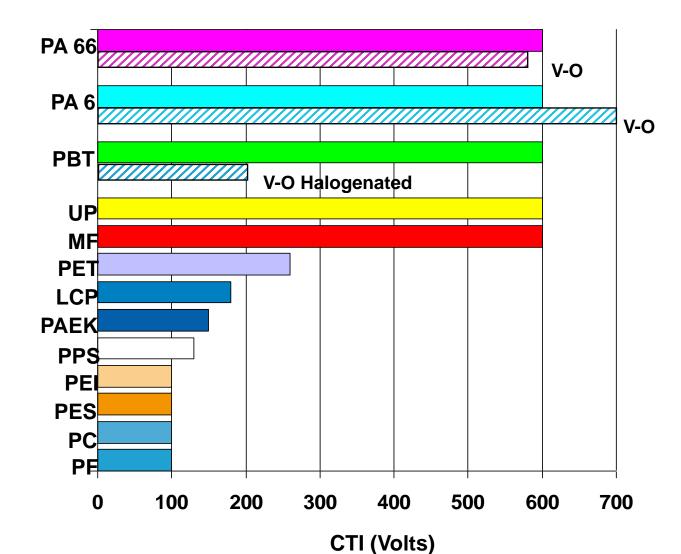
Comparative Tracking Indices

Creating a conductive pathway from charring the surface after arcing


Why It Matters

If a component is likely to experience arcs, it is important to understand the required potential energy required to deposit char on the surface and choose the material with a safety factor.

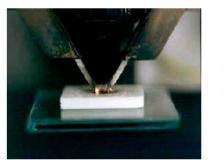
Comparative Tracking Index IEC 60112


- This test evaluates the materials resistance to create a carbon pathway (short path) in the presence of alternating current (probes) and a conductive solution is added to the surface.
- The voltage is increased until the arc forms the conductive damage or "track" on the surface. The CTI value is the effective voltage limit of the material in use.

We create chemistry

Comparative Tracking Indices

ASTM 3638 (similar to IEC 60112)


 Just how good is that insulator when exposed to arcing and high voltage in the presence of a conductive solution (i.e. rain, etc.)?

Additives Matter:

non-Halogenated vs Halogenated FR

Ultradur[®] B4400

Halogen-containing FR-PBT

Terminal Spacing Electrical Creepage

Insulation expectation for equipment for low-voltage systems - IEC 60664-1

Contamination Class / Degree of Pollution

- 1 None / no conductive pollution
- 2 Only non-conductive pollution, sometimes conductivity due to condensation
- 3 Conductive pollution or non-conductive pollution transformed due to moisture

Minimum distances to avoid failures because of creeping for pollution degree 3 (according to IEC 60664-1)

	Insulat	Insulating Material Class			
Voltage	1	2	3		
[V]	mm	mm	mm		
250	3.2	3.6	4.0		
400	5	5.6	6.3		
800	10	11	12.6		
1,000	12.6	14	18		

Insulation Class
1 600 ≤ CTI
2 400 ≤ CTI < 600
3a 175 ≤ CTI < 400
3b 100 ≤ CTI < 175

Resistance

to Ignition

A high CTI-Value allows smaller distances → Miniaturization

Tracking

Resistance

Insulation

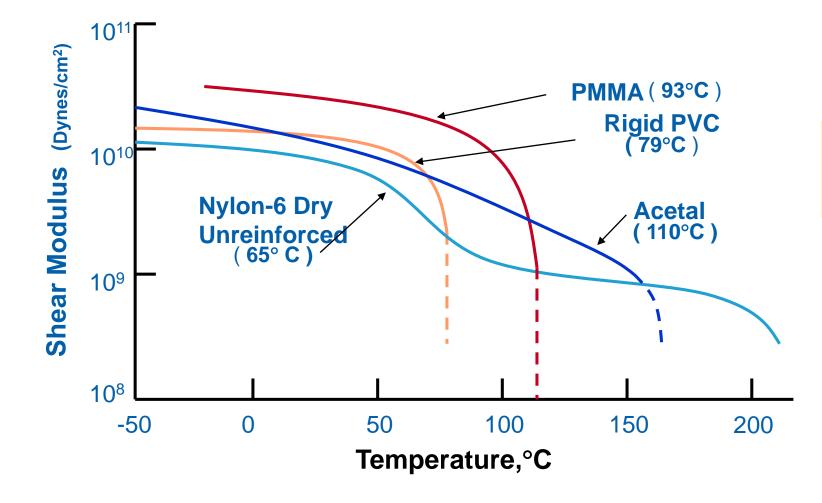
Thermal

Aging

29

Thermal Aging

Extended exposure to elevated temperature – effects on mechanical and electrical properties


Why It Matters

Understanding if material is stable in the actual environment or if it will be compromised from heat

Short-term Thermal Properties

Resistance to Ignition Insulation Tracking Resistance Aging

Structural Integrity/Stiffness as Function of Temperature (Glass Transition Temperature)

This often confuses people – heat aging versus response to heat

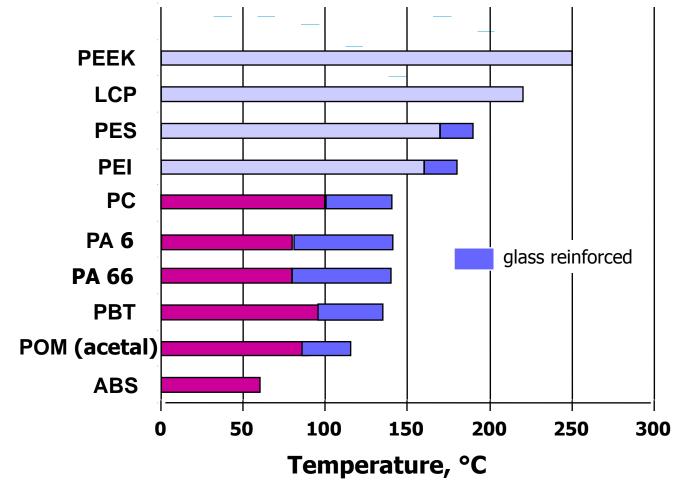
> **BASF** We create chemistry

Relative Thermal Indices (RTI)

Long-term Thermal Aging

- Heat aging is an expectation of electrical products
- Insulation performance and strength retention are critical in long-term use
- Generic values are listed unless a program is done (~65C upper limit)
- A new RTI program will take 18-24 months to complete
- UL requires testing to find the upper temperature limit for use of the product (greater than 10,000 hour exposure) – thickness dependent
 - Electrical (insulation performance)
 - Mechanical (strength retention)
 - Mechanical with impact (impact resistance retention)

Relative Continuous Use Temperatures


50% retention of tensile strength / 20,000 hrs

for long term exposure to heat RTI (Relative Thermal Indices) for tensile, electrical and impact

properties (shown as temperature on UL card)

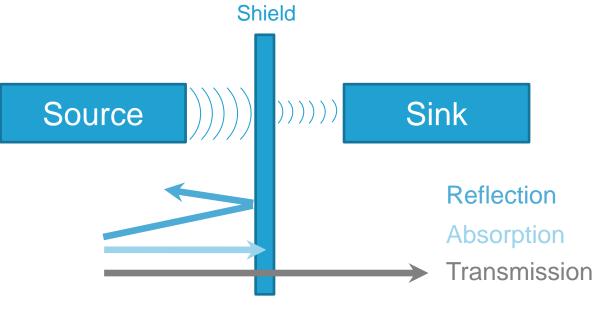
Test according to UL 746C

BASF We create chemistry

Resistance to Ignition Insulation

EMI Shielding

Material's ability to block electromagnetic waves or interference – capability to protect from external "noise" or signals


Why It Matters

Needed when multiple modules which create a EM field are located close to each other to ensure they work as designed (eliminate interference)

Generally "normal" polymers are not good EMI shield materials

EMI Shielding

- Electric vehichles with power of 100 kW in narrow spaces
- Voltage between 400 and 800 V
- Power electronics are sources of interference by producing electro-magnetic radiation
- Every other electronic component is a susceptible device $\rightarrow \underline{e}$ lectro- \underline{m} agentic <u>interference</u> (EMI) can occur
- EMI shielding protects environment and application against electromagnetic interference
- Electric conductive housings with low resistance required
 - Conductive matrix material
 - Conductive surface

E ₀ :	Field strength <i>without</i> shield
E_1 :	Field strength with shield
SE:	<u>s</u> hielding <u>e</u> fficiency

Required range of

shielding efficiency

$$SE [dB] = 20 \times log(E_0/E_1)$$

SE [dB]	E ₀ /E ₁	Transmitted power
20	10:1	10 %
40	100:1	1 %
60	1,000:1	0.1 %
80	10,000:1	0.01 %

SE = 60 dB \rightarrow Shield reflects and/or absorbs 99,9 % of electromagnetic energy

Shielding Efficiency of Materials

Injection molded plate with 3 mm wall thickness

Material	Shielding efficiency (at 1 G	Hz) Specific electric conductivity
Ultraform [®] N2320 C (POM-CNT)	15 dB	0.018 S/cm
Ultramid [®] A3WCG24 (PA66-CF10-GF20)	20 dB	0.039 S/cm
Ultrason [®] E 2010 C6 (PESU-CF30)	25 dB	0.089 S/cm
Ultramid [®] B3WC3 (PA6-CF15)	30 dB	0.548 S/cm
Ultramid [®] A3WC4 & 8 (PA66-CF20 & -CF40)	30 – 35 dB (saturation)	0.618 – 1.44 S/cm
Ultradur [®] B 4300 C3 (PBT-CF15)	40 dB	2.02 S/cm
PA66 with 30 wt. % steelfibers	90 dB	110 S/cm
	Required shieldin 60 – 80 dB	g efficiency:

Other Design Considerations

(Properties are not generally on datasheet)

- Fatigue
- Friction and Wear
- Creep (long term loading)
- Environmental effects
 - Chemical resistance
 - Temperature response
 - Effect of heat aging
 - Moisture (certain materials are hygroscopic absorb water easily)
 - UV light exposure

Please contact us with any questions you have concerning these topics before designing a part

Case Study: Battery Tray and Cover

- Part dimensions?
 - \rightarrow Warpage requirements?
- Structural battery pack?
 - \rightarrow Strength and stiffness requirements?
 - \rightarrow Crash requirements?
 - \rightarrow Must survive a drop test?
 - \rightarrow Mechanical stress requirements?
- ✓ Flame retardant requirements?
 - \rightarrow What is the distance from the bus bar?

CTI

- \rightarrow What is the distance from the bus bar?
- ✓ Orange colorable?

Application	Grade	Polymer Type	Fill	UL	Benefits
Tray	Ultramid® B3UGM210	PA6	10%GF 50%MF	V0 @ 1.5 mm	 Lower warpage Improved thermal conductivity Halogen-free
Cover	Ultramid® B3U Q717	PA6	None	V0 @ 1.5 mm	 Halogen-free

Design Consideration Overview

Electrical does not operate independent of all other properties

Application Processing

- □ Preferred processing method?
- □ Existing tool or open to new?
- □ Matching flowability with another material?
- Overmolding required?
- □ What part of the product is this for?
- □ Any processing restrictions?
- Tool maintenance concerns
- Fastening method (welding, adhesives, mechanical, etc.?)
- □ Laser sensitivity required (other marking)?

Part Geometries

- □ Thickness restrictions for design?
- □ Size restrictions for design?
- □ Volume of designed part?

Mechanical Operations Life

- Loading expectations
- □ Cyclic loading (fatigue)?
- □ Creep of long term loading
- ₃₉ **□** Friction and wear requirements

Temperature Range of Operation

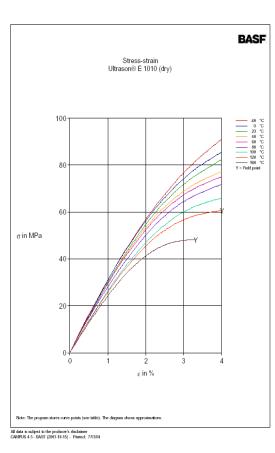
- □ Heat aging retention of properties (time and temp.)
- Dimensional stability and moisture barrier?
- □ Hydrolysis stability needed (high temp. and humidity)?

Flammability

- Does it need to be flame rated (UL 94)?
- □ Any specifics on UL listing or other approval?
- □ Glow wire or unattended appliance requirement?

Special Requirements

- Does the part see UV?
- □ Chemical exposure needs
- □ Need RoHS or other approvals
- □ Any restricted materials (halogen, copper, etc.)?
- □ Any special environments (nuclear for example)?
- □ Warpage concerns (mating to another part)?
- □ Colorability?



Thank You

Additional Resources

https://materials.ulprospector.com/en

CAMPUS

www.campusplastics.com

Computer Aided Material Pre-Selection

This program has much more information including stress-strain curves and creep, rheology, and shear modulus data

BASE We create chemistry