# IMPROVING ADHESION TO TPO WITH WATERBORNE ACRYLIC RESINS

Dr. Brent Crenshaw Sr. R&D Chemist

October 29, 2019



## Agenda

- Roof Coatings
- Single Ply and TPO
- Adhesion
- EPS<sup>®</sup> 2252
  - Properties
  - Formulation
- Summary
- Questions



The data in this presentation represent typical values. Because application variables are a major factor in product performance, this information should serve only as a general guide. EPS assumes no obligation or liability for the use of this information.

## What is a Roof Coating?

#### **RCMA (Roof Coatings Manufacturers Association)**

 Roof Coating: A fluid-applied adhered coating used for roof maintenance, roof repair, or as a component of a roof covering system or roof assembly

#### **Cool Roof Coatings**

 A roof coating that has been designed to reflect more sunlight and absorb less heat than a standard roof – www.energy.gov



# **Typical Benefits of Cool Roof Coatings**

#### Economic

- Repair and /or coat vs tear off and replace
- Federal and local tax deductions
- Less energy required for cooling
- Peak Energy Use Reduction

#### **Sustainable**

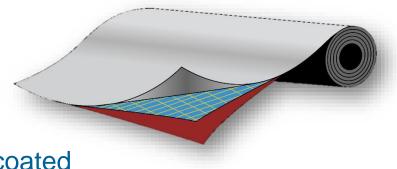
- Protect the roof surface by providing a low-cost, sacrificial layer that absorbs the punishment of the elements
- Extends the life of the roof indefinitely Can recoat to refresh the surface
- Reflective roof coatings reduce surface temperatures
- Avoids building or occupant disruption and roof replacement



# **Single Ply Membrane Roofing**

A roof system in which the principal roof covering is a single layer of flexible membrane Thermoplastic

- Poly vinyl chloride (PVC)
- Thermoplastic polyolefin (TPO)
- Thermoset
  - Ethylene propylene diene monomer (EPDM)


Adhered or mechanically fastened to roof Seams heat welded or adhered together





# **TPO Roofing**

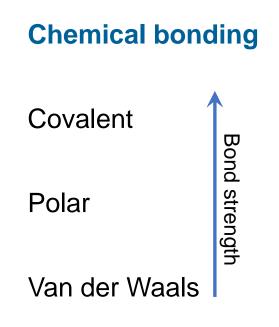
- Thermoplastic can be melted and reshaped
- Reinforced with polyester or glass fabric
  - 45 mils 90 mils
  - 5 30 year warranties
- ASTM D6878 Published 2003
- Double digit growth rate
- Aged roofs needing to be replaced or coated
- Adhesion to TPO is challenging!





# **Adhesion – Mechanical Bonding**

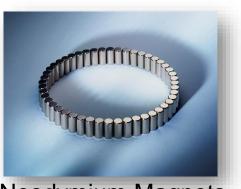
### **Mechanical bonding**


- Velcro
- Stitches
- Mechanical fasteners








## **Adhesion - Chemical Bonding**







### Welded metal

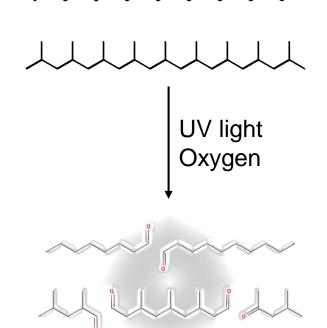


**Neodymium Magnets** 

Magnetized pin

# **Photo-oxidative Degradation of Polyolefins**

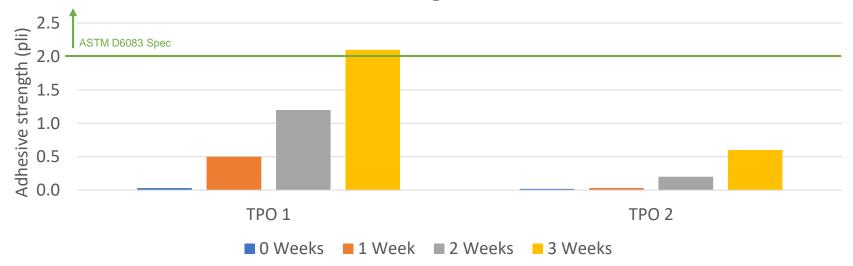
### **Polyolefin structures**


• Only Van der Waals forces

### Mechanism of aging

- UV and Oxygen work to sever chains
- Surface degrades and chalks
- Polarity of the surface increases

### **Stabilizers**


• Inhibit the degradation process





# **Adhesion with Aging**

### 180° Wet Peel Adhesion of a Commercial Roof Coating to QUV Aged TPO





# **Primers on Aged TPO**

### Aging of TPO is inconsistent

- Dirt and debris
- Water ponding
- Biological growth
- Shadows
- Edge reflection
- Mechanical damage
- And more...





Primers or surface treatment is used to normalize the surface and promote adhesion everywhere.

# **Primers on Aged TPO**

### Aging of TPO is inconsistent

- Dirt and debris
- Water ponding
- Biological growth
- Shadows
- Edge reflection
- Mechanical damage
- And more...





Primers or surface treatment is used to normalize the surface and promote adhesion everywhere.

# **Bonding to TPO**

### **Chemically modify the surface**

- Aged membranes
- Plasma Treatment
- Flame treatment

### Prime the Surface with like material

- Chlorinated Polyolefins
- Solvent based adhesives
- EPS<sup>®</sup> 2252 Waterborne acrylic



## **EPS® 2252: Technical Information**

Excellent adhesion to TPO, EPDM, metal, asphalt, and other common roofing substrates

- <50 g/L VOC capable
- Can be used in both primer and basecoat formulations

Formulated without APEOs

| Specifications |                |
|----------------|----------------|
| Weight Solids  | 60.0 +/- 0.70% |
| Weight/Gallon  | 8.55 +/- 0.10  |
| рН             | 8.0 - 9.0      |

#### **Typical Properties**

| Volume Solids | 59.0 +/- 0.70% |  |
|---------------|----------------|--|
| Tg            | -32° C         |  |
| Volatile(s)   | Water          |  |
|               | Ammonia        |  |



### **Adhesion Properties: Competitive Benchmarking**

| Sample       | Solvent or Water | 24hr<br>dwell | Mode of<br>Failure | 7 day<br>dwell | Mode of Failure |
|--------------|------------------|---------------|--------------------|----------------|-----------------|
| Commercial 1 | Water            | 4.1           | Adhesive           | 3.8            | Adhesive        |
| Commercial 2 | Water            | 6.9           | Adhesive           | 4.5            | Adhesive        |
| EPS® 2252    | Water            | 9.5           | Cohesive           | 15.5           | Cohesive        |
| Commercial 3 | Solvent          | 2.2           | Cohesive           | 8.5            | Cohesive        |
| Commercial 4 | Solvent          | 2.5           | Cohesive           | 8.1            | Cohesive        |
| Commercial 5 | Solvent          | 1.9           | Cohesive           | 10.3           | Cohesive        |





Testing Conditions - 180° Peel Adhesion - Crosshead Speed 2 in/min Spread Rate - 9 lbs/100 sqft Substrate - Plywood

## **Primer / Base Coat**

- Primer/base coat function
  - Adhesion
  - Corrosion resistance
  - Bleed block
  - Build thickness
- Primer
  - Primarily resin / carrier
  - Not for film build applied at 200-400 sqft/gal

#### Base Coat

- Functionality of a binder but also counted in film build
- Often tinted gray to speed up cure and distinguish from top coat





### **EPS® 2252 RC1 Base Coat Formula**

| Pounds | Gallons | Raw Material      |
|--------|---------|-------------------|
| 155.00 | 18.61   | Water             |
| 3.00   | 0.30    | Dispersant        |
| 3.00   | 0.40    | Base              |
| 1.00   | 0.12    | Defoamer          |
| 30.00  | 0.90    | TiO2              |
| 430.00 | 19.05   | Calcium Carbonate |
|        |         |                   |
| 450.00 | 52.63   | EPS 2252          |
| 3.00   | 0.33    | Biocide           |
| 11.00  | 1.15    | Fungicide         |
| 11.00  | 1.27    | Glycol            |
| 3.00   | 0.27    | HEC Thickener     |
| 44.15  | 5.30    | Water             |

| Formulation Parameters |           |
|------------------------|-----------|
| Weight Solids          | 64.87%    |
| Volume Solids          | 51.90%    |
| Pigment Volume Conc.   | 38.91     |
| Calculated VOC Level   | 24 g/L    |
| Weight/Gal             | 11.41 lbs |

| Typical Properties |             |  |
|--------------------|-------------|--|
| Viscosity          | 90 - 100 KU |  |
| рН                 | 9.0 - 10.0  |  |
| Color              | White       |  |

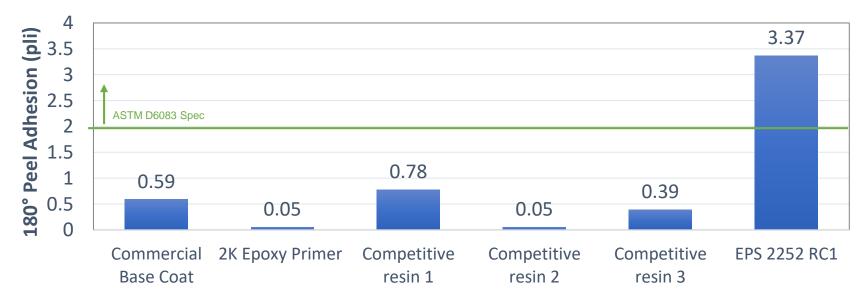


# More detailed information and formulation guidance available at <u>www.epscca.com</u>

# **Testing Protocol**

### **Sample Preparation**

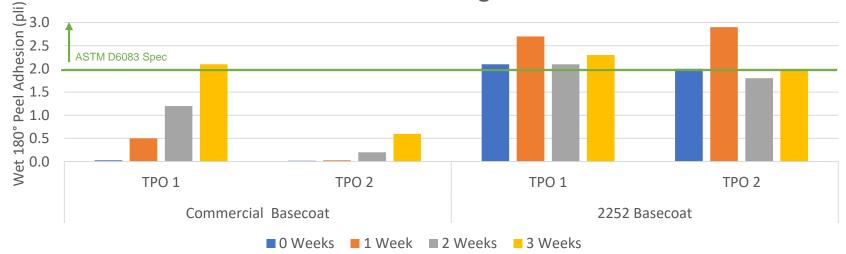
- Base coat formulation was applied to substrate using a 20 mil drawdown bar and allowed to dry overnight
- Primers applied at 4-8 wet mils and allowed to dry overnight.
- Fabric embedded in 20 mils of topcoat EPS<sup>®</sup> 2719 SR2
- Cured 2 weeks under ambient conditions (Dry Adhesion) then soaked in water 1 week before testing (Wet Adhesion)


### **180° Peel Adhesion**

- Adhesion was run at 2 inches/min in a tensile testing machine
- Wet adhesion was conducted while the sample was still wet



### **Primer Benchmarking**


### Wet Adhesion to New TPO





### **EPS 2252 on New and Aged TPO**

### Wet Adhesion of a Commercial Roof Coating and EPS 2252 Basecoat to QUV Aged TPO





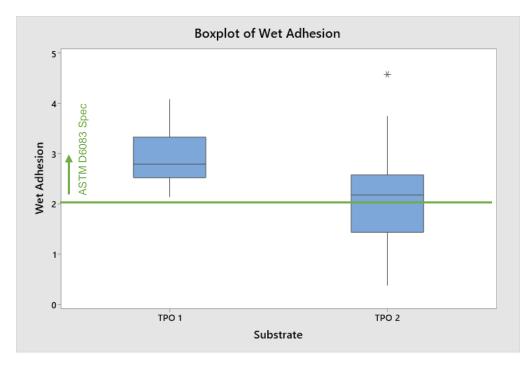
### **Multi-Substrate Adhesion**





# **Formulation: Experimental Design**

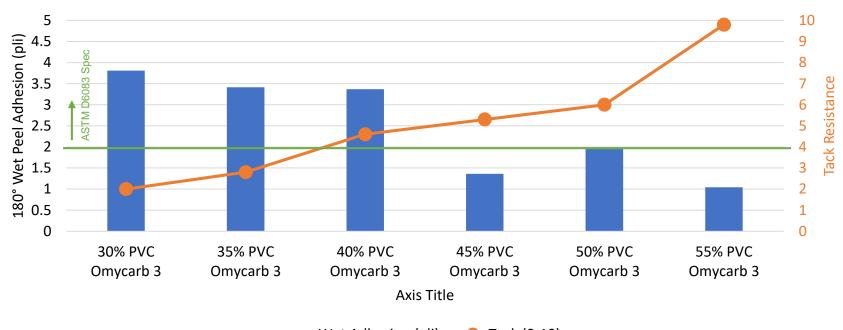
### Purpose


 Compare 180° peel adhesion of different formulations of EPS<sup>®</sup> 2252 on different TPOs

### Variables tested

- Pigment Volume Concentration
- Defoamer types
- Dispersant types
- TiO2 types
- Formula viscosity
- Wetting aids




## **Overall Results Comparison**

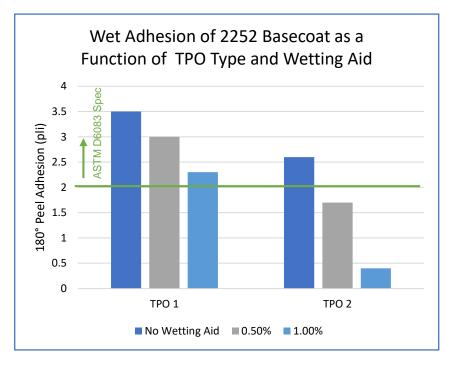




Strength of adhesion to TPO varies by manufacturer

### **EPS® 2252: Formulation - PVC**

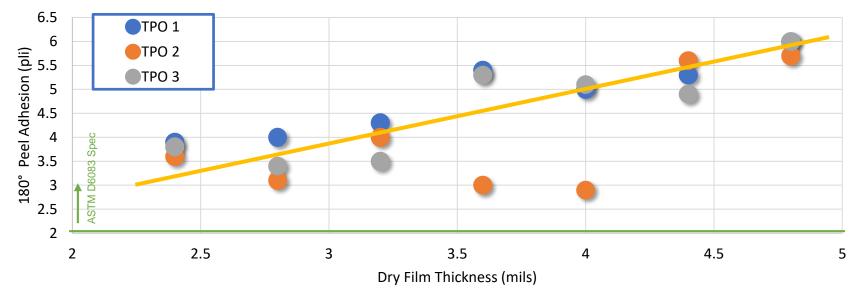



Wet Adhesion (pli) ——Tack (0-10)



Highly filled systems may negatively impact adhesion and should be evaluated 40% PVC is recommended for an optimal combination of adhesion and low tack

### **EPS® 2252: Formulation - Dispersants and Surfactants**


- The use of and level of dispersants, surfactants and wetting aids may impact the adhesion performance properties of the roof coating.
- A ladder study is recommended to determine the optimum level.





### **Substrates and Film Thickness**

#### Adhesion of 2252 Primer as a Function of Dry Film Thickness



- Adhesion values tend to increase with increasing film thickness
- For more challenging substrates increased film thickness can increase adhesion.



Roof coatings are often the most economical and sustainable way to maintain a roof over the long term

Coating TPO is challenging due to the difficulty of adhering to it

EPS<sup>®</sup> 2252 is a novel waterborne option that provides excellent adhesion to both new and aged TPO

- Can be formulated as a primer or basecoat
- Minimal formulation leads to optimal adhesion



#### Dr. Brent Crenshaw, PhD bcrenshaw@eps-materials.com

# More information available at: <u>www.epscca.com</u>



