Increasing coating durability through the enhancement of mechanical properties

Jean-Yves LOZE

COATING - KEY PROPERTIES FOR AN IMPROVED DURABILITY

→ Coatings requirements:

- Whole range of finishes:
 - Glossy, satin to matte
 - Smooth to textured finish
- Ensure protection of the substrate while keeping the finishing of the coating
 - High scratch & abrasion resistance
 - Good rub and burnishing resistance
 - Excellent stain & chemical resistance

INCREASING COATING DURABILITY THROUGH THE ENHANCEMENT OF MECHANICAL PROPERTIES

→ Agenda

- Surface modification using Orgasol® and Rilsan® polyamide powders
 - Mechanism of modification of the surface
 - Incorporation of polyamide powders in formulations
 - Example:
 - Deep matte 2K Solventborne wood coating
- Mechanical properties improvement
 - Impact of polyamide particles on the coating mechanical properties and test results
 - Abrasion resistance and scratch resistance
 - Stain and chemical resistance
 - Burnishing resistance
- Conclusions

Surface modification • Gloss adjustment • Improved Block resistance

- Reduction of friction coefficient
- Food contact

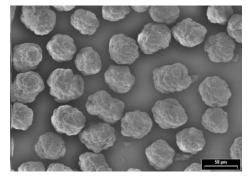
Multi-functional
Additives

Easy to use

- Good dispersion capacity
- Compatible with SB, WB and UV formulations
- Reduced impact on rheology
- Low density (no settlement)

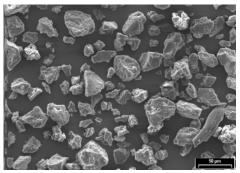
Simple introduction in the formulation

Mechanical properties


- Abrasion and scratch resistance
- Burnishing resistance
- Impact resistance & Flexibility
- Chemical resistance

Improved durability

PA 12, PA 6 and PA 6/12 based powder

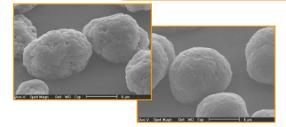


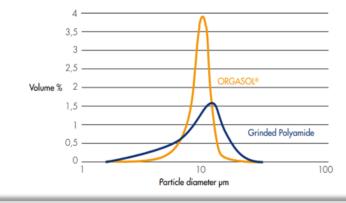
- ★ Unique spherical morphology & porous structure
- ★ Wide range of particle sizes available from 5 to 60 µm
- ★ Very narrow particle size distribution
- ★ Proprietary process: no grinding step

PA 11 based powder

- \star Wide range of particle sizes available from 20 to 100 μm
- ★ Mass-colored grades available
- ★ Specific grinding process

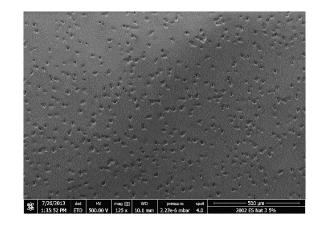
Vegetal oil

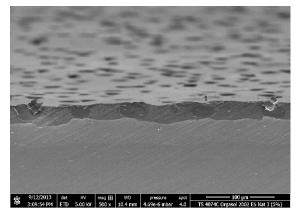




Polyamide 11

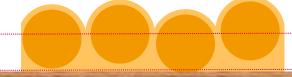
Requires less fossil energy and generate less CO₂ or other greenhouse gases than most performance polymers


Unique 5, 10µm diameter particles Control of the morphology Lower PSD is achievable



→ Mechanism of modification of the surface

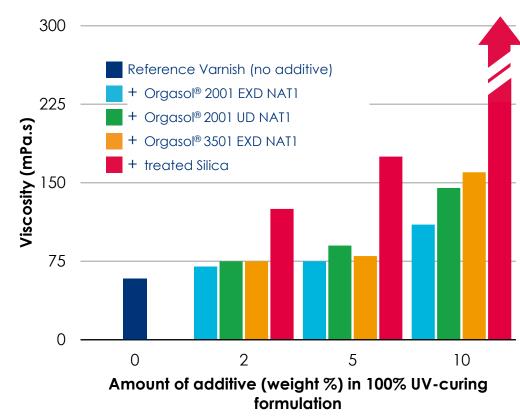
- Polyamide particles create roughness at the surface of the coating
 - Density of the polyamide powders close to 1
 - do not migrate at the surface or settle during drying
 - stay well dispersed in the bulk: no tendency to agglomerate
 - Homogeneous modification of the coating
 - Isotropic coating
 - Polyamide particle = semi-crystalline polymer particles
 - not a "standard filler"



Gloss / very low roughness

Matt / low roughness

texture / rough & regular


Dry coating thickness

\rightarrow Easy to use

- Average polarity of polyamide
 - Surface tension: 36 46 mN/m
 - easy to wet and disperse in many solvents and water
- Low oil absorption
 - Reduced impact on the viscosity of the formulation

→ Dispersibility

- Can be added at any stage of the formulation
 - Milling base
 - Letdown phase
- Moderate shear rate is sufficient
- In most cases, no need for dispersing agent or wetting additives
 - Most resins are good dispersion media for Orgasol® and Rilsan® Fine Powders
 - In some specific cases, a pre-dispersion (in water/solvent/UV monomer) can be used

- → Aim: Formulate a deep matte clear coat (Gloss <5GU at 85°)
 - → Starting from a formulation of a glossy clear coat

Weight composition % -	Formulation 1	Supplier
PART A		
Butyl Acetate	9.5	
SYNOCURE® 213 BA 50	34.4	SYNOCURE
OCTA SOLIGEN ZINC 8%	0.1	Borchers
Butyl Acetate	16.7	
Solution CAB 381-2 (10% AB-PMA)	29.6	Eastman
BORCHI® GOL LAC 80 (10% in ethyl acetate)	0.2	Borchers
Matting agent: Orgasol®		ORGASOL ADVARKEMA

PART B		
DESMODUR® N75 BA	3.3	Covestro
Butyl Acetate	6.2	

Target:

→ Dry coating thickness: 30µm

→ Gloss: <5GU @60°, <8GU @85°

→ Optimization of Orgasol® nature and amount in the formulation

	ORGASOL		Gloss (GU)				
	2001 UD Nat 2	2001 EXD Nat 1	2002 D Nat 1	2002 ES3 Nat 3	20°	60°	85°
reference					59	86	94
Formula 1	3				2	17	43
Formula 2		3			3	18	27
Formula 3			3		2	15	14
Formula 4				3	2	5	10
Formula 5	2,5		3		1	4	4

Combination of particles
Increased micro-roughness

INCREASING COATING DURABILITY THROUGH THE ENHANCEMENT OF MECHANICAL PROPERTIES

→ Agenda

- Surface modification using Orgasol® and Rilsan® polyamide powders
 - Mechanism of modification of the surface
 - Incorporation of polyamide powders in formulations
 - Example:
 - Deep matt 2K Solventborne wood coating

Mechanical properties improvement

- Impact of polyamide particles on the coating mechanical properties and test results
- Abrasion resistance and scratch resistance
- Stain and chemical resistance
- Burnishing resistance

Conclusions

Surface modification Gloss adjustment Improved Block resistance Reduction of friction coefficient Food contact

Multi-functional
Additives

Easy to use

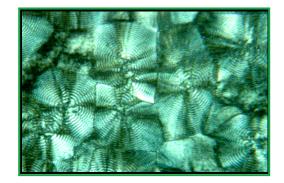
- Good dispersion capacity
- Compatible with SB, WB and UV formulations
- Reduced impact on rheology
- Low density (no settlement)

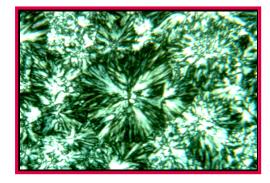
Simple introduction in the formulation

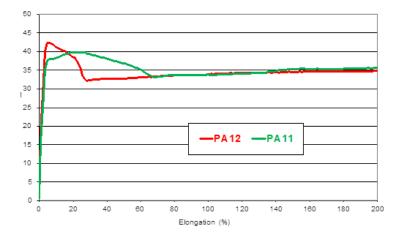
Mechanical properties

- Abrasion and scratch resistance
- Burnishing resistance
- Impact resistance & Flexibility
- Chemical resistance

Improved durability

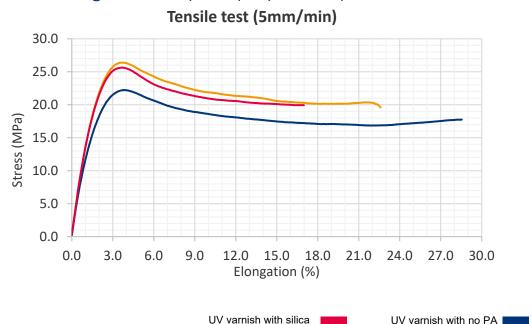

→ Modification of the coating with polyamide particles

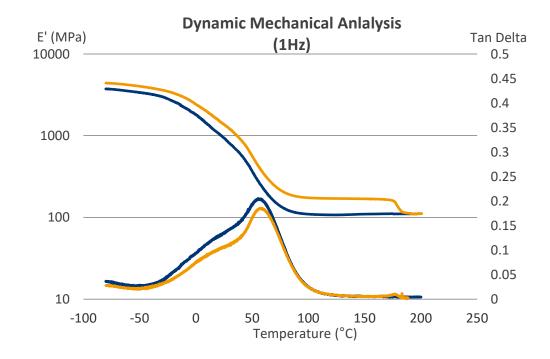

- Polyamide chemistry
 - Modify the mechanical properties of the coating
 - Non-reactive:
 - Do not react with the binders whatever the chemistry
 - Intrinsic properties of the polyamide
 - Semi-crystalline: hardness
 - Long chain polyamide: flexibility and stiffness


Elongation at break ≥ 200% PA12 & PA11

Tensile strength at break ≥ 40MPa PA12 & PA11

Tensile Modulus >1200 MPa PA12 & PA11

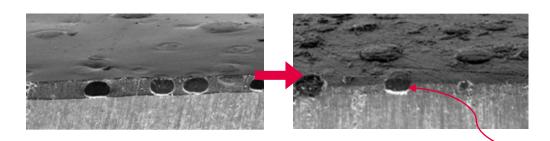


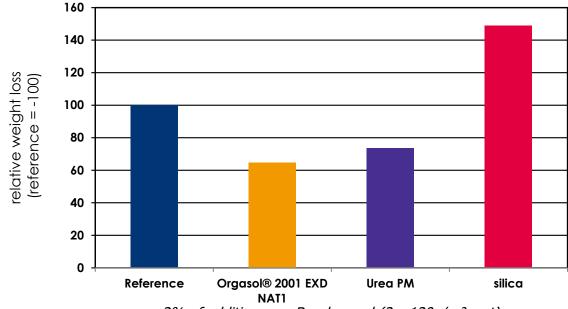

UV varnish with PA

→ Modification of the coating with polyamide particles

Modified coating

- Keeps a good flexibility
 - Key property for durability
- Is strengthened by the polyamide particles




100% UV coating

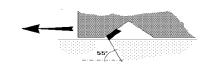
→ Abrasion resistance

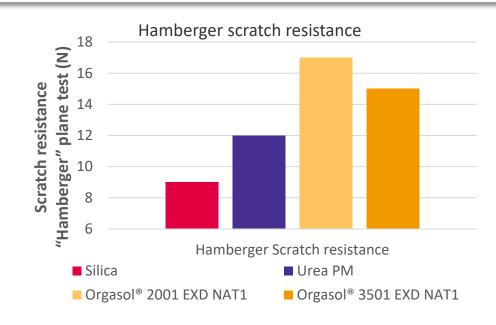
40 GU à 85° varnish	Function	% w/w	Supplier
Encor® 2171	Acrylic emulsion	83.5	ENCOR
Byk®-028	Defoamer	0.4	Altana
Amonia 25%	pH regulator	80.0	-
Orgasol®	Matting agent	2.0	ORGASOL MY ARKEMA
Crayvallac® A2678M	Levelling agent	0.5	CRAYVALLAC MATTER AND
Dowanol® PnB	Co-solvent	4,0	Dow
Dowanol® DPnB	Co-solvent	3,0	Dow
Coapur™ 6050	Rheological additive	0.3	COAPUR
Deionized water		6.3	-

Taber test (CS-10 – 1000 grams – 500 cycles) done after 20 days @23℃

2% of additive – on Beech wood (2 x 120g/m² wet)

Orgasol® particles deform under stress, it is less abraded than the coating resin





→ Scratch resistance

40 GU @ 60° varnish	Function	% w/w	Supplier
Encor® 2718	Acrylic emulsion	77.5	ENCOR
Byk®-025	Defoamer	0.5	Altana
adjust pH at 8.0 - 8.54			
Coapur™ 830 W	Rheological additive	0.15	COAPUR
Coapur™ 2025	Rheological additive	1.6	■ ARKEMA
Orgasol® 3501 EXD NAT1	Matting agent	1.5	ORGASOL AND ARKEMA
Irgacure® 500	Photo-initiator	1.0	BASF
Butylglycol	Co-solvent	2.0	
Byk [®] -333	Wetting agent	0.2	Altana
Byk®-348	Levelling agent	0.4	Altana
Eencor® 7605	Acrylic emulsion	4.6	ENCOR
Deionised water		10.6	

Hard/Mineral particles
do not deform
No dissipation of stress

Orgasol® polyamide particles

deform

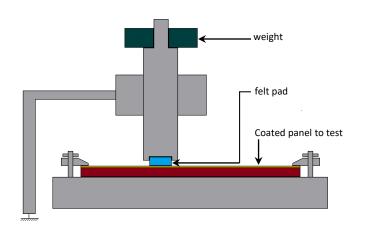
dissipation of stress

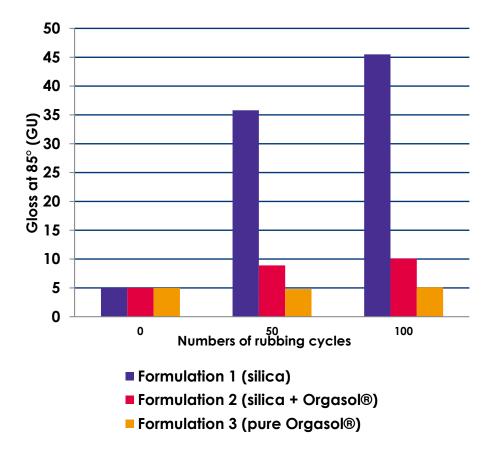
→ Burnishing resistance

• Deep matte clear topcoat – starting point formulation

Weight composition % -	Formulation 1	Formulation 2	Formulation 3	Supplier
PART A				
Butyl Acetate	9.2	9.1	9.0	
SYNOCURE® 213 BA 50	33.4	32.9	32.5	SYNOCURE ATTACKEMA
OCTA SOLIGEN ZINC 8%	0.1	0.1	0.1	Borchers
Butyl Acetate	16.2	15.9	15.8	
Solution CAB 381-2 (10% AB-PMA)	28.7	28.2	28.0	Eastman
BORCHI® GOL LAC 80 (10% in ethyl acetate)	0.2	0.2	0.2	Borchers
Silica	3.0	2.5		
ORGASOL® 2001 UD NAT2		2.0	2.5	ORGASOL
ORGASOL® 2002 D NAT1			3.0	W ARKEMA
PART B				
DESMODUR® N75 BA	3.2	3.2	3.2	Covestro
Butyl Acetate	6.0	6.0	6.0	

Max loading of Orgasol® to keep a non-hazy coating depends on the binder nature

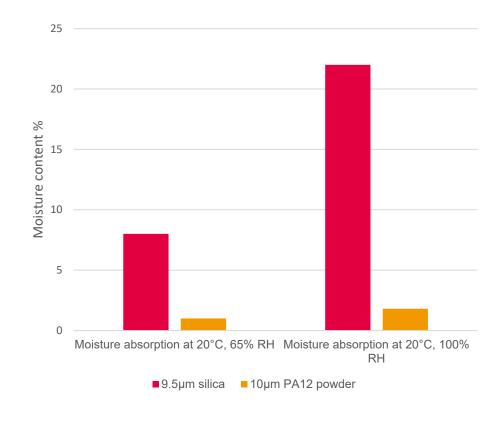

Usually < 5,5%

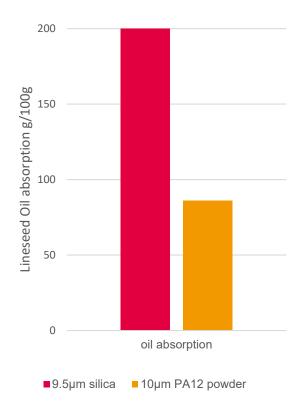


→ Burnishing resistance

• Principle:

• Gloss increase after rub cycles

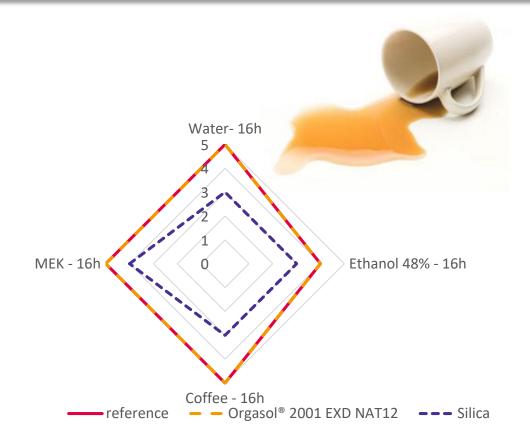




→ Stain and chemical resistance

Polyamide chemistry

- · Long chain polyamide
- PA12 and PA11 are hydrophobic polymers
- Insoluble in most organic solvents:
 - aromatic hydrocarbons,
 - ether,
 - acetone,
 - chlorinated solvents
- Very low water absorption
- Very low oil absorption



→ Stain and chemical resistance

Waterborne UV clear varnish

Weight composition	Formulation	Function	Supplier
Encor [®] 2718	77.1	UV-curable acrylic emulsion	ENCOR
Byk [®] -025	0.5	Defoamer	Altana
Sodium hydroxide solution :	Adjust pH at 8-8.5	pH regulator	
Coapur™ 830W	0.15	Rheological additive	COAPUR
Coapur™ 2025	1.6	Rheological additive	EVARKEMA
Orgasol® 2001 EXD NAT1	2.1	Matting agent	ORGASOL DE ARKEMA
Irgacure [®] 500	1.0	Photo-initiator	BASF
Butylglycol	2.0	Co-solvent	
Byk [°] -333	0.2	Levelling agent	Altana
Byk [°] -348	0.4	Wetting agent	Altana
Encor® 7605	4.6	Wax emulsion	ENCOR
Deionized water	10.5	Solvent	

- Viscosity (Ford cup 4) = 60 + -5 seconds
- \circ pH = 8.0 8.5
- o 2 coats of 100 gr/m² Forced drying = 10mn 45°C + UV CURING

INCREASING COATING DURABILITY THROUGH THE ENHANCEMENT OF MECHANICAL PROPERTIES

→ Conclusions

- Surface modification using Orgasol® and Rilsan® polyamide powders
 - Satin to deep matt wood coating
- playing on the particle size of the Polyamide powder versus dry coating thickness

- Smooth to textured coating
- Mechanical properties improvement
 - Increased Yield strength and Elastic modulus, while keeping flexibility
 - Improved abrasion resistance and scratch resistance
 - Improved burnishing resistance
 - Equivalent stain and chemical resistance
- Long chain Polyamide 12 and 11 powders
 - improve the durability of the coating
 - solve multiple issues for the coating formulator

Disclaimer

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. Since the conditions and methods of use of the product and of the information referred to herein are beyond our control, ARKEMA expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY OR ANY OTHER WARRANTY, EXPRESSED OR IMPLIED. IS MADE CONCERNING THE GOODS DESCRIBED OR THE INFORMATION PROVIDED HEREIN.

The information provided herein relates only to the specific product designated and may not be applicable when such product is used in combination with other materials or in any process. The user should thoroughly test any application before commercialization. Nothing contained herein constitutes a license to practice under any patent and it should not be construed as an inducement to infringe any patent and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement. See SDS for Health & Safety Considerations. Arkema has implemented a Medical Policy regarding the use of Arkema products in Medical Devices applications that are in contact with the body or circulating bodily fluids:

http://www.arkema.com/en/social-responsibility/responsible-product-management/medical-device-policy/index.html

Arkema has designated Medical grades to be used for such Medical Device applications. Products that have not been designated as Medical grades are not authorized by Arkema for use in Medical Device applications that are in contact with the body or circulating bodily fluids. In addition, Arkema strictly prohibits the use of any Arkema products in Medical Device applications that are implanted in the body or in contact with bodily fluids or tissues for greater than 30 days. The Arkema trademarks and the Arkema name shall not be used in conjunction with customers' medical devices, including without limitation, permanent or temporary implantable devices, and customers shall not represent to anyone else, that Arkema allows, endorses or permits the use of Arkema products in such medical devices.

It is the sole responsibility of the manufacturer of the medical device to determine the suitability (including biocompatibility) of all raw materials, products and components, including any medical grade Arkema products, in order to ensure that the final end-use product is safe for its end use; performs or functions as intended; and complies with all applicable legal and regulatory requirements (FDA or other national drug agencies). It is the sole responsibility of the manufacturer of the medical device to conduct all necessary tests and inspections and to evaluate the medical device under actual end-use requirements and to adequately advise and warn purchasers, users, and/or learned intermediaries (such as physicians) of pertinent risks and fulfill any postmarket surveillance obligations. Any decision regarding the appropriateness of a particular Arkema material in a particular medical device should be based on the judgment of the manufacturer, seller, the competent authority, and the treating physician.

Rilsan®, Pebax®, Kynar ®,Kynar Flex®, Kepstan®, Platamid® and Rnew® are registered trademarks of Arkema

© 2020 All rights reserved. Arkema Inc.

REMINDERS

Visit our website orgasolpowders.com

Questions?

Use the question panel on the right

Jean-Yves LOZE

Jean-yves.loze@arkema.com

