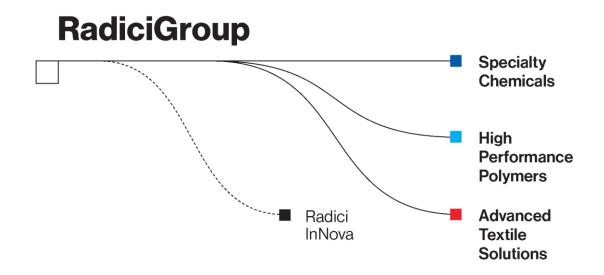
Latest innovations in Additive Manufacturing: RadiciGroup High Performance Polymers presents Radilon[®] Adline

Chiara Devasini - Marketing & Development Project Leader

Ambra Suardi - R&D Project Leader Scouting and Consumer goods Market

Webinar : Latest innovations in additive manufacturing and water management


Agenda

- > RadiciGroup High Performance Polymers at a glance
- > Additive Manufacturing Technology
- > Radilon® Adline new product range for Additive Manufacturing
- > Radilon® Adline future developments

RadiciGroup High Performance Polymers at a glance

RadiciGroup is one of the world's leading producers of a wide range of chemical intermediates, polyamide polymers, high performance polymers and advanced textile solutions.

RadiciGroup High Performance Polymers fatcs

UPSTREAM INTEGRATION

of PA6 Radilon® S, PA6.6 Radilon® A, PA6.10 Radilon® D, PA6.12 Radilon® DT and copolymers

EXPERTISE

in high performance polymers formulation and compounding, meeting the needs of the most diverse applications

RadiciGroup High Performance Polymers Innovation

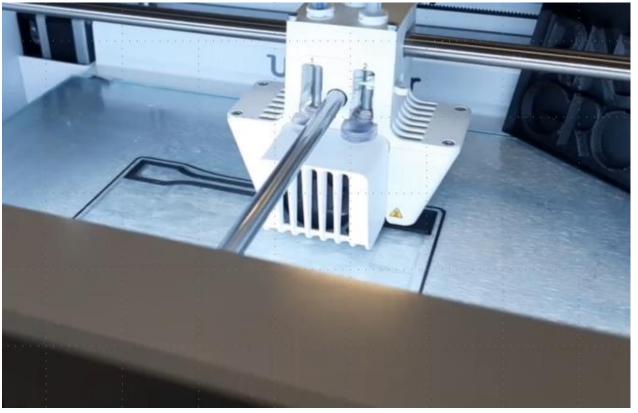
GROWTH THROUGH INNOVATION

RadiciGroup High Performance Polymers target is to develop highly innovative material solutions with additional attention to reducing their environmental impact.

The new product range Radilon® Adline meets the needs of Additive Manufacturing technology, offering advanced and sustainable material solutions.

Radilon® Adline printed with Ultimaker S5

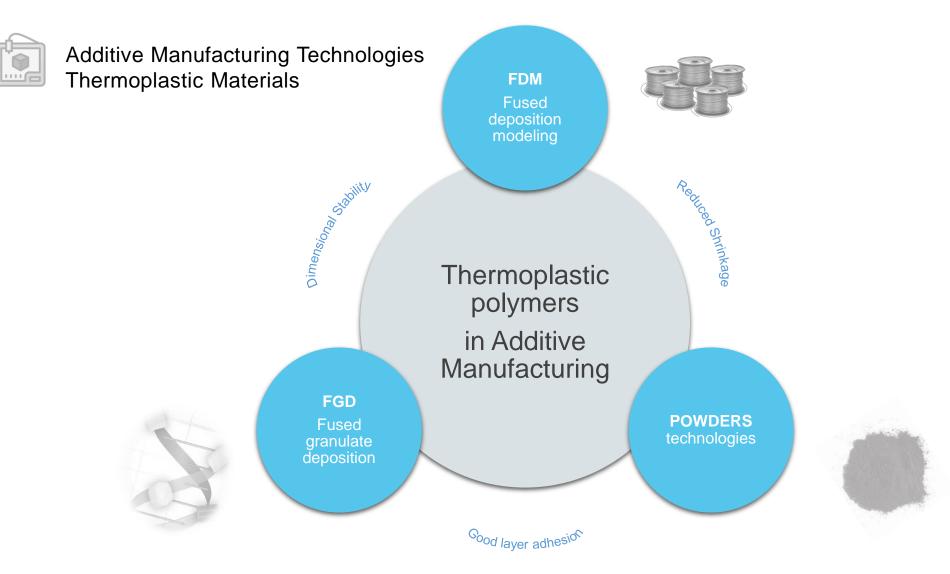
Additive Manufacturing Technology trends


Awareness about AM technologies, 2016 and 2019 (%)*

Experience of AM technology per industry 2019 (%)*

* EY Global 3D printing survey April 2019; n =900 companies

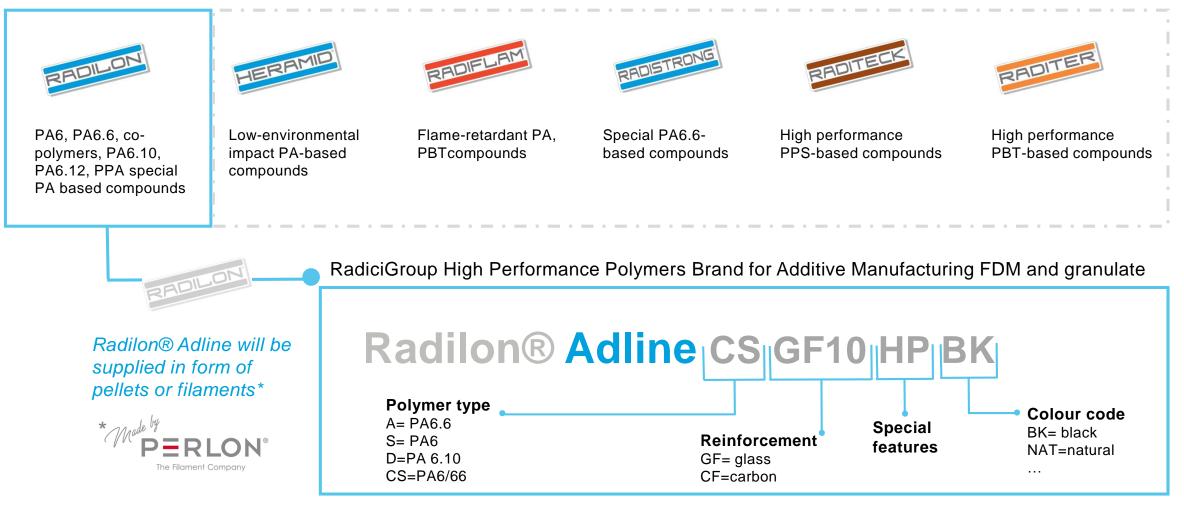
Additive Manufacturing Technology benefits



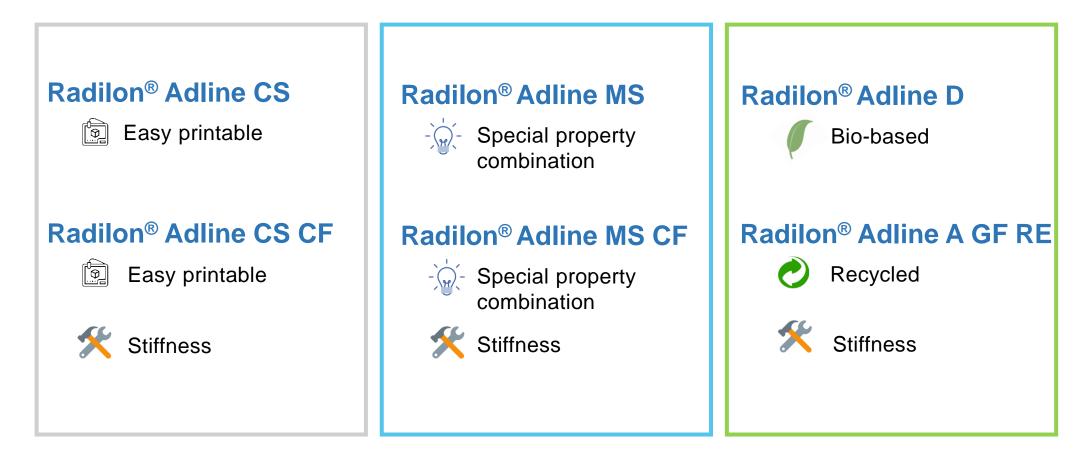
Radilon® Adline printed with Ultimaker S5

- > No fixed cost for tooling
- Design flexibility
- > Customization & personalization
- > Prototyping production
- > Faster time to market
- > Reduce logistic efforts

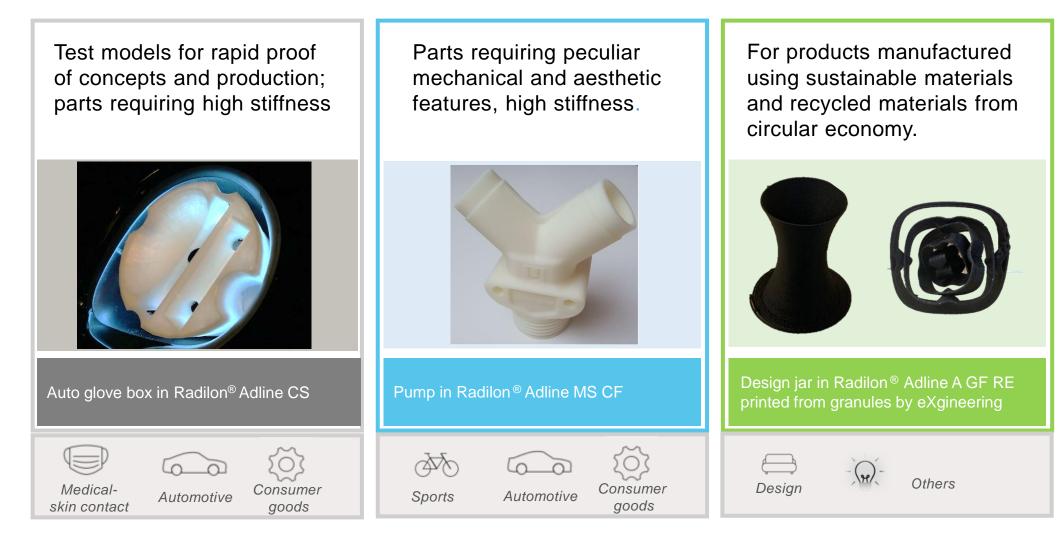
Additive Manufacturing Technologies



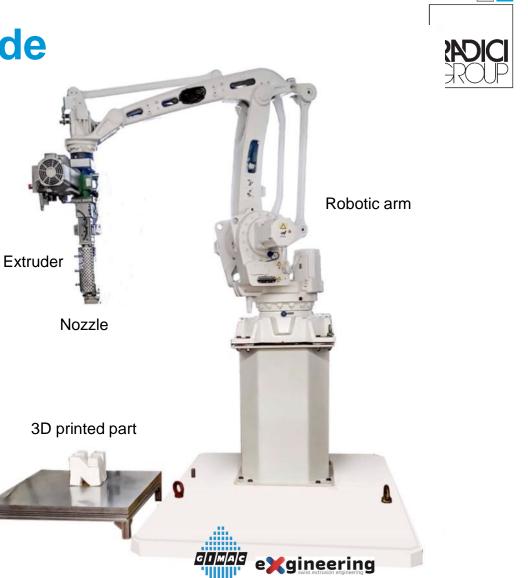
Additive Manufacturing Technology & Materials


RadiciGroup High Performance Polymers Main Brands for injection molding and extrusion

Radilon[®] Adline grades



Additive Manufacturing product range | FDM and fused granulate deposition



Radilon[®] Adline applications

Additive Manufacturing product range | FDM and fused granulate deposition

Radilon[®] Adline RE - recycled grade

Additive Manufacturing product range | fused granulate deposition

RadiciGroup, in order to be in front line with sustainability, environmental awareness and circularity, joined the EU Project named Car-E Service.

Title: Circular Economy Business Models for innovative hybrid and electric mobility through advanced re-use and re-manufacturing technologies and services.

Acronym: Car-E Service Duration: 36 Months; Kick Off: 1 June 2018 Program: H2020-CIRC-2017 15 Partners

https://www.careserviceproject.eu/

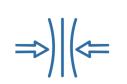
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776851

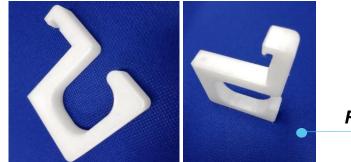
Agenda

- > RadiciGroup High Performance Polymers at a glance
- > Additive Manufacturing Technology
- > Radilon® Adline new product range for Additive Manufacturing
- > Radilon® Adline future developments

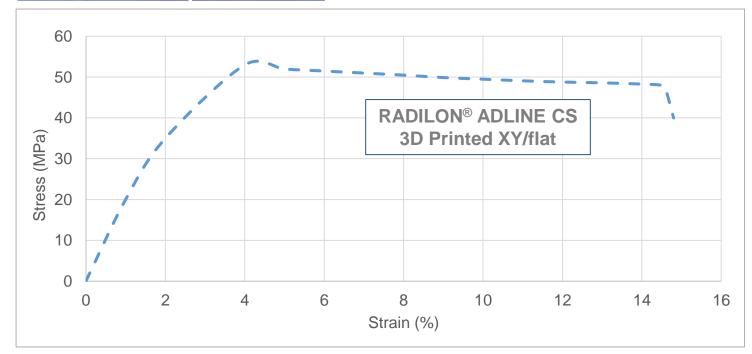
RADILON® ADLINE CS for FDM

KEY PROPERTIES




- > High dimensional stability
- Trasparent material

> Easy process ability



- Good surface aspect
- > Ductility

Baggage hook in RADILON[®] ADLINE CS

Tensile curve of FDM printed RADILON® ADLINE CS

RADILON® ADLINE and COVID-19 Emergency: a Case History

Protective face shields in RADILON® ADLINE CS

RADILON® ADLINE MS for FDM

KEY PROPERTIES

- > Compression resistance
- Right compromise between stiffness and toughness
- Low water absorption
- Good surface aspect and color stability
- > Heat and chemical resistance

Industrial gear and cup holder in **RADILON® ADLINE MS**

Pump in **RADILON® ADLINE MS** printed with the collaboration of Perlon and Ultimaker

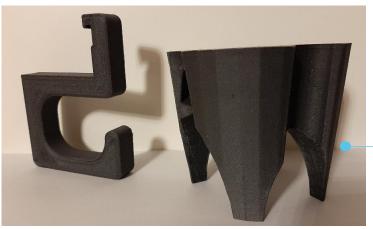
PERLON

Ultimaker

RADILON® ADLINE Carbon fiber reinforced grades for FDM

KEY PROPERTIES

> High modulus and strength

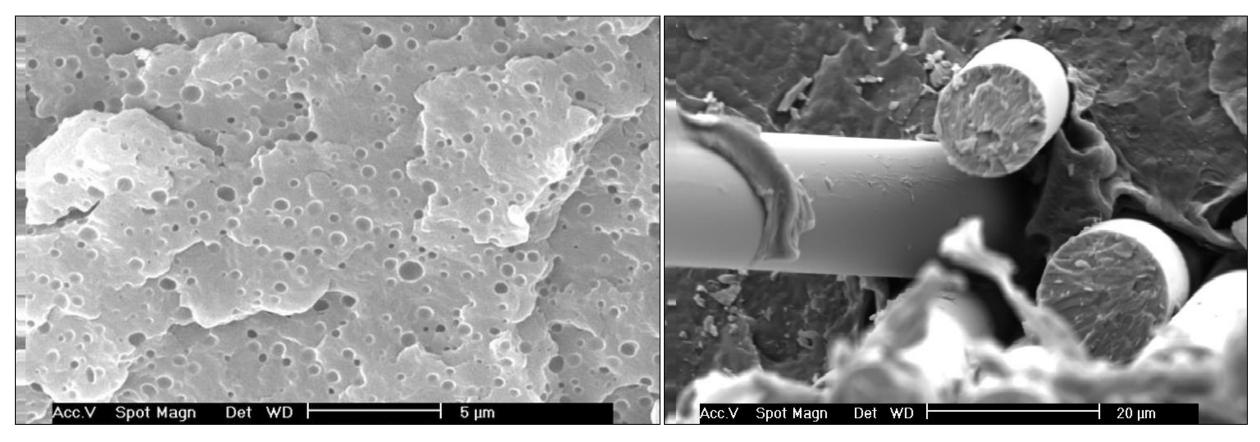


- > Fatigue and compression resistance
- > Low water absorption

- > Good surface aspect
- > Heat and chemical resistance 00

Pieces in RADILON® ADLINE CS CF10 **HP** printed with the collaboration of Perlon and Ultimaker

PERLON°

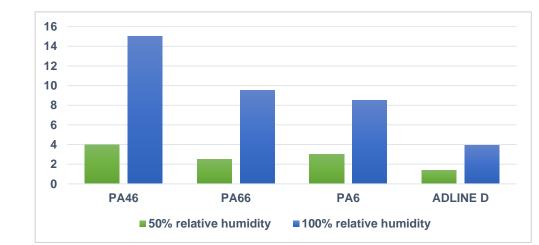

Ultimaker

Cup holder and baggage hook in **RADILON® ADLINE MS CF10**

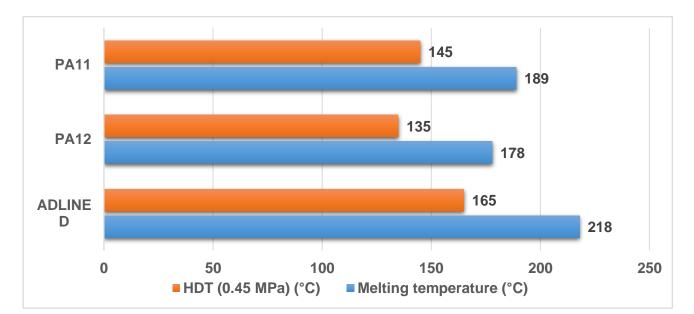
RADILON® ADLINE Carbon fiber reinforced grades for FDM

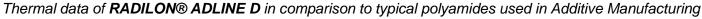
Compound structure tuned to minimize warping and maximize layer adhesion

SEM Analysis on RADILON® ADLINE CS CF10 HP


RADILON® ADLINE D for FDM

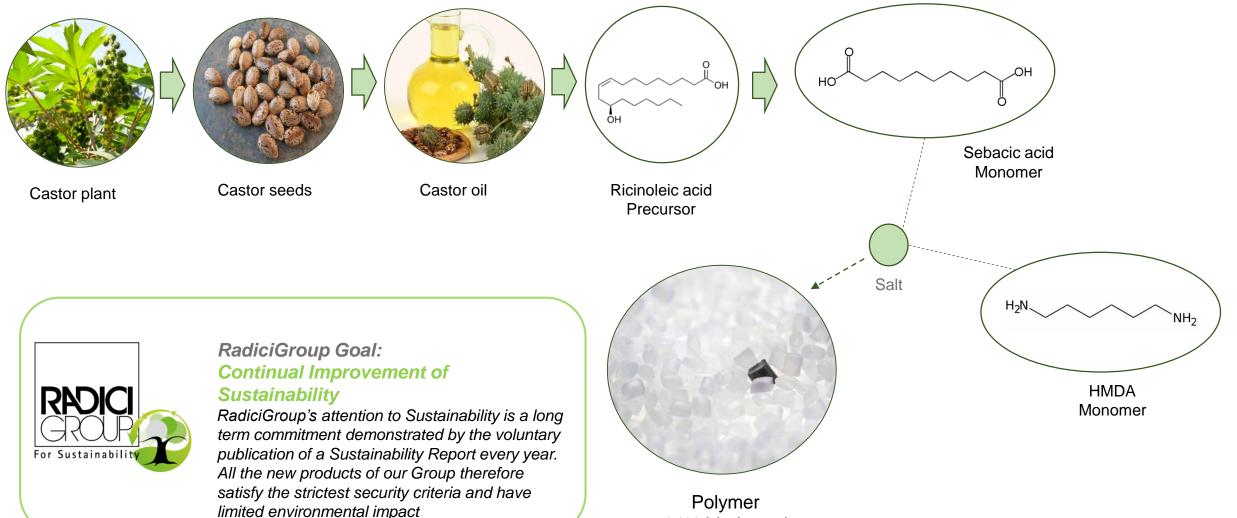
KEY PROPERTIES


- > Bio-based (64% renewable source polymer)
- > Low water absorption



- High chemical and thermal resistance
- Excellent hydrolysis resistance
 and dimensional stability

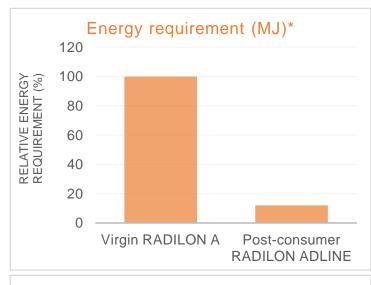
Moisture absorption of RADILON® ADLINE D and other polyamides

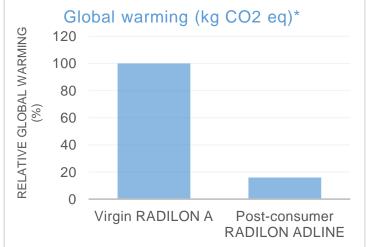


RADILON® ADLINE D: Sustainability

64% bio-based

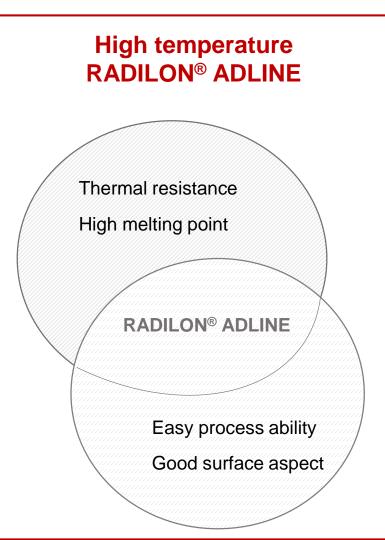
RADILON® ADLINE RE GF30 BK Recycled grades for FGF


KEY PROPERTIES


 Reduced global and warming potential

- > Less consumption of energy
- > High modulus and strength
- Fatigue and compression resistance
- Heat and chemical resistance

*In agreement with ISO 14040 Life Cycle Assessment standard



Designer vase in experimental **post-consumer RADILON® ADLINE** developed with the collaboration of eXgineering and CAR-E Service

RADILON® ADLINE: Future Developments

Focus on Sustainability

- ✓ 100% bio-based
 RADILON® ADLINE
- ✓ Recycled RADILON[®] ADLINE grades: further developments

Partnership

Close collaboration with printer manufacturers to develop RADILON® ADLINE portfolio

3D printed pump in experimental **RADILON® ADLINE** under development with the collaboration of 3ntr **3ntr**

Chiara.Devasini@radicigroup.com Ambra.Suardi@radicigroup.com

Thank you

in f 🎔 🖸 🖸

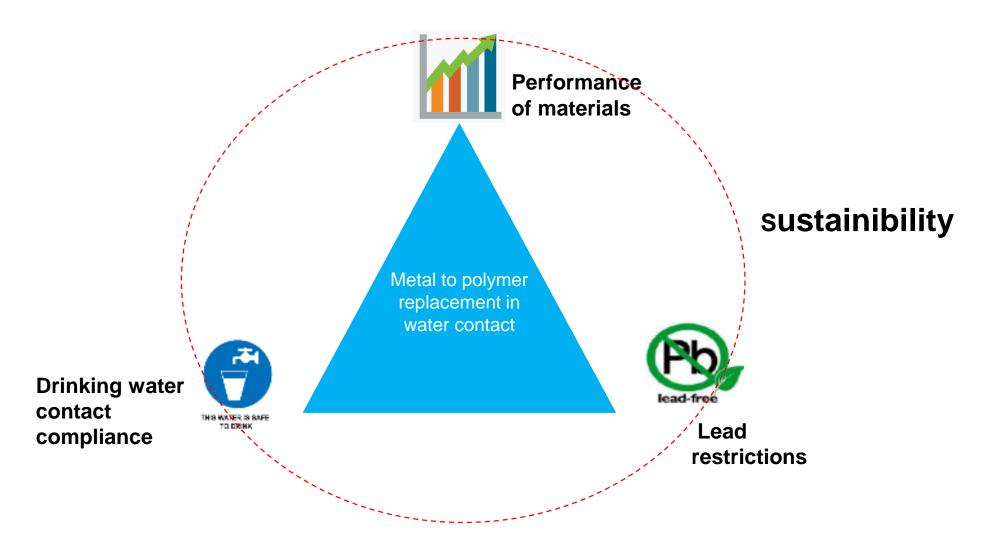
Key drivers in metal to polymer replacement in water management

Paolo Rossi - Appliance & Water management Segment Leader

Webinar : Latest innovations in additive manufacturing and water management

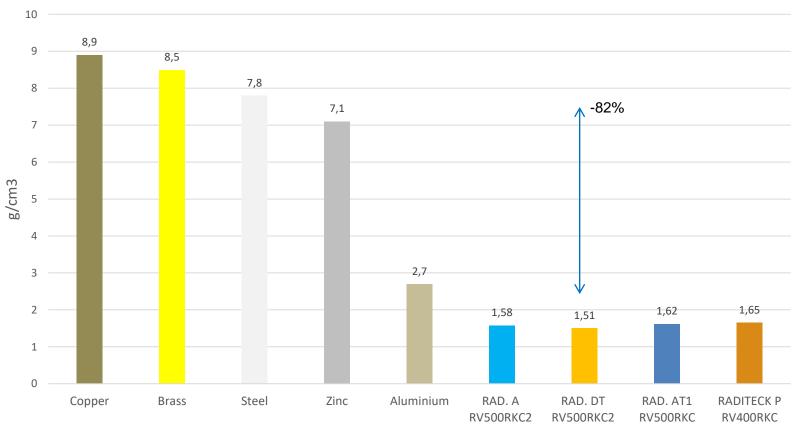
«Water drops»

- > Key Market Drivers in metal to polymer replacement in Water Management
- > Metal to Polymers replacement examples in Water Management
- > Designing with CAE
- > Water Management case study

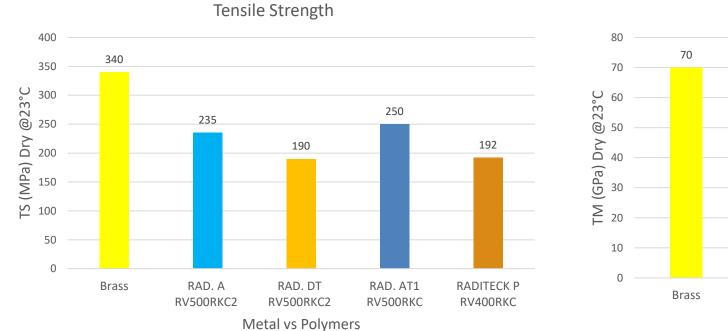

Key market drivers in metal to polymer replacement in water management

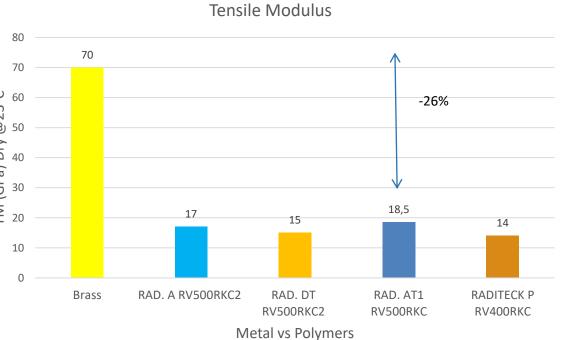
Key market drivers in metal to polymer replacement in water management

RADIC


Polymer performance

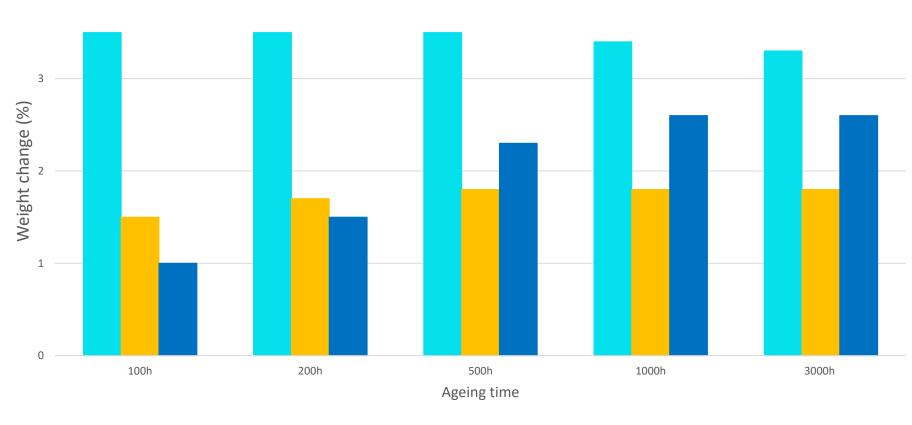
Polymer properties vs metals



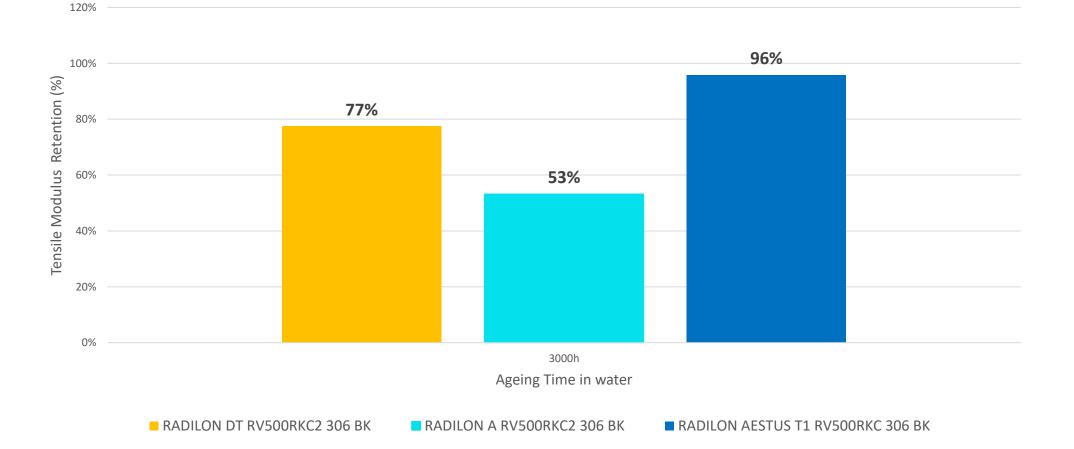

Density

Metal vs Polymers

Polymer properties vs brass

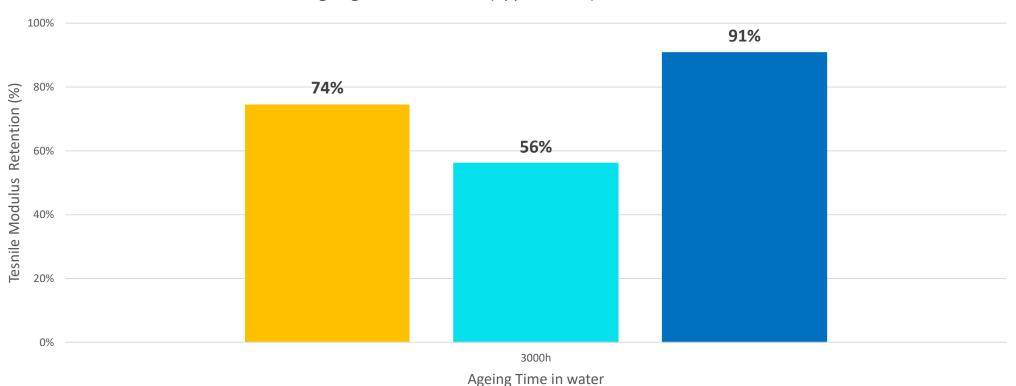


Weight Change after ageing in water @60°C (5ppm NH2Cl)


RADILON A RV500RKC2 306 BK RADILON DT RV500RKC2 306 BK RADILON AESTUS T1 RV500RKC 306 BK

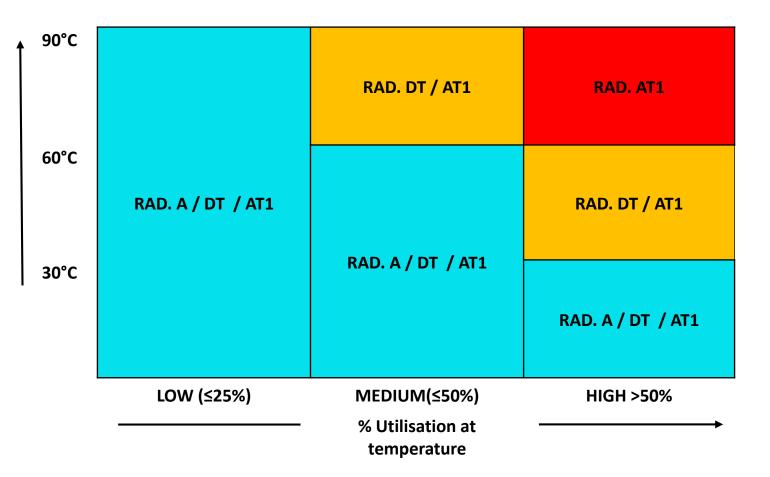
Ageing in Water @60°C (5ppm NH2Cl)

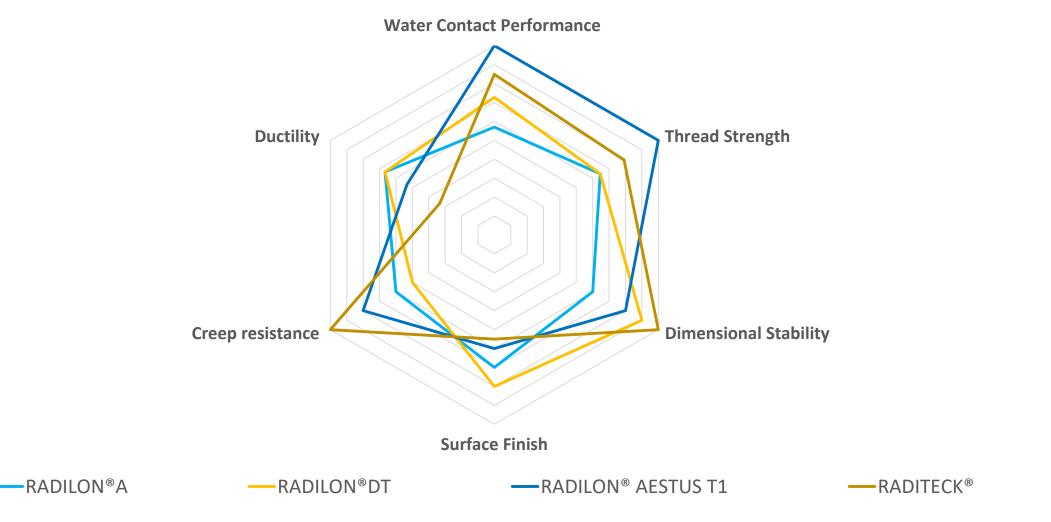
Ageing in Water @60°C (5ppm NH2Cl)



100% 80% 60% 40% 20% 0% 0% 300h Ageing Time in water

Ageing in Water @90°C (5ppm NH2Cl)


RADILON DT RV500RKC2 306 BK RADILON A RV500RKC2 306 BK RADILON AESTUS T1 RV500RKC 306 BK


Ageing in Water @90°C (5ppm NH2Cl)

Positioning polymer performance in water

Positioning polymer performance in water

Global lead restrictions

Global lead restrictions

RADICI GROUP

Different lead restrictions in the world:

- > EU Standards for Drinking Water (98/83/EC) from 12-2013 have reduce lead content = 0.010 mg/l (10 ppb)
- The more stringent pass/fail criteria for certification to the NFS 61 standard will require the maximum amount of lead leaching to be reduced from 5 micrograms (µg) to 1 µg for plumbing endpoint devices that dispense drinking water such as faucets, and from 3 µg to 0.5 µg for other plumbing components such as connector hoses and small shut-off valves.

Lead restrictions

Polymers Benefits Vs Brass :

- > No corrosion
- No heavy metal contamination coming from polymers
- Polymer contribute in the reduction
 of lead content in water systems

= Safer drinking water !

THIS WATER IS SAFE TO DRINK

Drinking water certifications

Nation	Standard	Tests required
UK	WRAS (BS6920)	Microbial growth, organoleptic &chemical properties
DE	KTW	Organoleptic properties, migration tests
DE	W270	Microbial growth
FR	ACS	Migration tests & cytotoxicity
USA	NSF 61	Migration tests & site audit

Drinking water certifications

GRADE	POLYMER	COLOUR	FILLERS		KTW		W270	NSF61	WRAS	ACS	
RADILON® A RV300RKC2 306 BK	PA 6.6	Black	GF30	\Diamond			ð		\Diamond	\checkmark	
RADILON® A RV300RKC2 106 NT	PA 6.6	Natural	GF30	\Diamond			ð		\Diamond	Þ	
RADILON® A RV500RKC2 306 BK	PA 6.6	Black	GF50	\Diamond			ð		\Diamond	✓	
RADILON® A RV500RKC2 106 NT	PA 6.6	Natural	GF50	\Diamond			ð		\Diamond	Þ	
RADILON® A RCM4010RKC 306BK	PA 6.6	Black	GF10 M30						\Diamond		
Cold water certificate, 23°C	\Diamond	Warm w	\Diamond	Hot water certificate, 85°C			°C				
Approval pending	ð	Microbial growth test certificate					Positive list compliancy				

RADICI HPP will have RAD A Range approved according to new KTW-BWGL by Q1-2021

Drinking water certifications

GRADE	POLYMER	COLOUR	FILLERS		KTW		W270	NSF61	WRAS	ACS	
RADILON® DT CV300RKC2 306 BK	PA 612	Black	GB30						\bigcirc		
RADILON® DT CV300RKC2 106 NT	PA 612	Natural	GB30						\bigcirc		
RADILON* DT RV300RKC2 306 BK	PA 6.12	Black	GF30	\Diamond	\bigcirc		ð		\bigcirc	\checkmark	
RADILON® DT RV300RKC2 106 NT	PA 6.12	Natural	GF30	\Diamond	\bigcirc		ð		\bigcirc	P	
RADILON® DT RV500RKC2 306 BK	PA 6.12	Black	GF50	\Diamond	\bigcirc		ð		\bigcirc	\checkmark	
RADILON® DT RV500RKC2 106 NT	PA 6.12	Natural	GF50	\Diamond	\Diamond		ð		\bigcirc	P	
Cold water certificate, 23°C	\bigcirc	Warm water certificate, 60°C				\Diamond	Hot water certificate, 85°C				
Approval pending	<u>A</u>	Microbial growth test certificate					Positive list compliancy				

RADICI HPP will have RAD DT Range approved according to new KTW-BWGL by Q1-2021

RAD

Drinking water certifications

GRADE	POLYMER	COLOUR	FILLERS		KTW		W270	NSF61	WRAS	ACS	
RADILON [®] Aestus T1 RV300RKC 306 BK	PPA	Black	GF30	\bigcirc		\Diamond	ð			Þ	
RADILON® Aestus T1 RV300RKC 106 NT	PPA	Natural	GF30	\Diamond		\Diamond	ð			Þ	
RADILON® Aestus T1 RV400RKC 306 BK	PPA	Black	GF40	\Diamond		\Diamond	ð			Þ	
RADILON® Aestus T1 RV400RKC 106 NT	PPA	Natural	GF40	\Diamond		\Diamond	ð			Þ	
RADILON® Aestus T1 RV500RKC 306BK	PPA	Black	GF50	\Diamond		\Diamond	ð			Þ	
RADILON® Aestus T1 RV500RKC 106NT	PPA	Natural	GF50	\Diamond		\Diamond	ð			P	
Cold water certificate, 23°C	d water certificate, 23°C 🛛 💧 Warm water certificate, 60°C					\Diamond	Hot water certificate, 85°C				

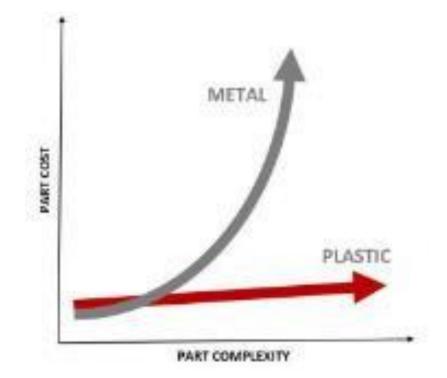
Approval pending

Microbial growth test certificate

=~

Positive list compliancy

Metal to polymer replacement sustainibility



Metal to polymer replacement sustainibility

Polymers Benefits related to sustainability Vs Brass :

- > Lower environmental impact (up to less 50% on GWP)
- Lower production costs (depending on system)
- Lower density (up to 80% less)
- Less processing steps
- Better design freedom (integration & feasibility of complex parts)
- > Better tolerances without post treatment or reworking
- > Higher tooling life
- > Stable vs Brass volatile pricing

Metal to polymers replacement examples in water management

Water distribution: water meter housing & other wm components

Metal to Polymers replacement benefits:

Lighter (up to max 80% lighter than Brass)
 Easier to install (less injuries)
 Lower transport costs

Lead free

- Lower CO2 Footprint (PA vs Brass)
- System Cost reduction
- * Recyclable material end of life

Material grades typically specified:

Radilon[®] A RV500RKC2 (PA66-GF50) - Radilon[®] DT RV500RKC2 (PA612-GF50) – Radilon[®] DT CV300RKC2 (PA612-GB30) - Radilon[®] Aestus T1 RV500RKC (PPA-GF50)

Water distribution: water meter box & lid

Metal to Polymers replacement benefits:

- Lighter (up to 70% lighter than cast iron)
 Easier to install/use (less injuries)
 Lower transport costs
- Shape retention upon load & heat (Vs PP)
- No corrosion (rust free)
- Noise pollution reduction (lower density than cast iron)
- Theft prevention (no scrap value)
- Lower CO2 Footprint (PA Vs cast iron)
- * System Cost reduction
- * Recyclable material end of life

Material grades typically specified:

Radilon[®] A RV300RKC (PA66-GF30)- Heramid[®] A NER GF030/1 K (PA66 – GF30 recyled grade)

Plumbing: cap fittings

Metal to Polymers replacement benefits:

- Lighter (up to 80% lighter than brass)
 Easier to install/use (less injuries)
 Lower transport costs
- Part Colourability without extra steps
- Lower CO2 Footprint (PA Vs brass)
- System Cost reduction
- Recyclable material end of life

Material grades typically specified:

Radilon[®] A RV300RKC 106NT (PA66-GF30) - Radilon[®] S RV300RKC2 all colours (PA6-GF30 new development grades)

Plumbing: innercore fittings

Metal to Polymers replacement benefits:

- Lighter (up to 80% lighter than brass)
 Easier to install/use (less injuries)
 Lower transport costs
- Part Colourability without extra processing steps
 Lower CO2 Footprint (PA Vs brass)
 System Cost reduction
- * Recyclable material end of life

Material grades typically specified:

Radilon[®] Aestus T1 RV500RKC (PPA-GF50) – Raditeck[®] P HSX100KC 1706 NT (PPS-GF10 new development grade)

Heating: boiler hydraulic group or other components

Metal to Polymers replacement benefits:

- Lighter (up to 80% lighter than brass)
 Easier to install/use (less injuries)
 Lower transport costs
 Lower CO2 Footprint (PA Vs brass or copper)
- Part Colourability without extra processing steps
 Lead free
- System Cost reduction (less parts integration of components possible)
- * Recyclable material end of life

Material grades typically specified:

SL : Radilon[®] A RV300RKC 306BK (PA66-GF30) - SL/HL: Radilon[®] A RV300RKC2 306BK (PA66-GF30), Radilon[®] A estus T1 RV400RKC 306BK (PPA-GF40)- HL: Radilon[®] A RV300RG 3900BK (PA66–GF30)

Sanitary: mixer cartridge component

Main Typical requirements:

- Operating Temperature 20-60°C
- Resistance to hydrolisis with disinfectants & cleaning agents up to 90°C
- > High Dimensional stability
- > Resistance to wear after Life Cycle test (100k hrs)
- KTW/W270 ,WRAS , ACS, NSF 61, Drinking Water approvals

Material grades typically specified:

Radilon[®] A RV300RKC2 (PA66 –GF30) - Radilon[®] DT RV300RKC2(PA612-GF30) - Radilon[®] Aestus T1 RV400RKC (PPA-GF40)

Large appliances: electrovalves housing

Metal to Polymers replacement benefits:

Lighter (up to 80% lighter than brass)
 Easier to install/use (less injuries)
 Lower transport costs
 Lower CO2 Footprint (Vs brass /PA66)

Part Colourability without extra processing steps

Lead free

System Cost reduction (less parts – integration of components possible)

Recyclable material end of life

Material grades typically specified:

Radilon[®] A RV300RKC2 (PA66-GF30) - Radilon[®] DT RV300RKC2 (PA612-GF30)

Small appliances: coffee machine pump housing

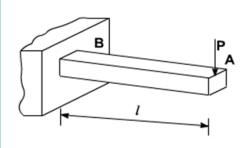
Main Typical requirements:

- > Water and Food Approvals (23°C up to 60°C)
- > Hydrolysis resistance up to 85°C
- > Excellent dimensional stability

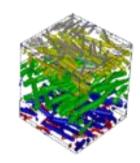
Material grades typically specified:

Radilon[®] A RV500RKC2 (PA66-GF50) - Radistrong[®] Aroma RV500RKC2 (Special PA –GF50 development grade) - Radilon[®] Aestus T1 RV400RKC (PPA –GF40)

Designing with CAE


Designing with CAE

Process

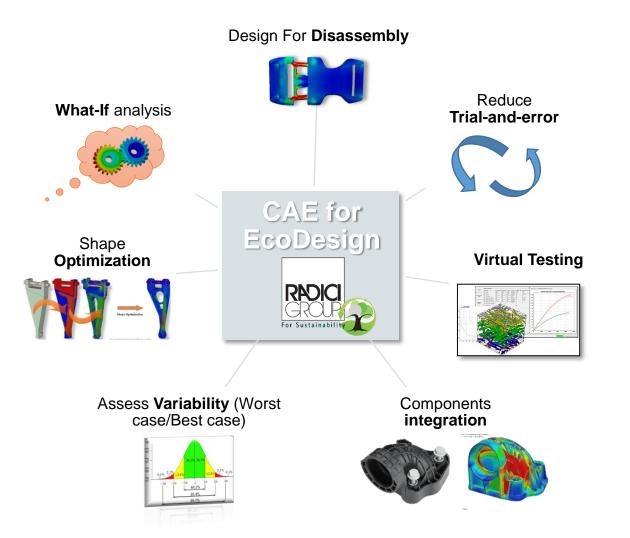

- > Injection molding
- Flow, Packing, Cooling, Warpage
- Prevision of processrelated output and defects

Structural

- > Static non linear, contact
- > Stiffness, strength, failure
- Dynamic, Impact, Vibrations
- Thermal and thermomechanical

Integrated

- From Process to Structure
- Anisotropic behavior, GF orientation, welding lines
- Multi-scale material model


Metal Replacement – Key concept RAD > Change MATERIAL, maintain FUNCTIONALITY, gain ADVANTAGES Weight reduction "Metal to **HighPerformance** Form design **freedom** polymer" **Integration** of functions Reduction of **post-manufacturing** Not a "volume refilling" but a Aesthetics, color re-engineering process! Total **cost** of part (\neq cost per kg!!!) **Functional CAE** validation **START Re-design** Prototyping Scale-up analysis Identification of part(s) **Processability** Rapid prototyping / Soft Identification of part Integration of functions **Definitive tooling** to be replaced (Injection Molding) requirements tooling /... Preliminary cost Identification of desired Plastic design Mechanical performance Functional tests on Functional tests on (Structural) material properties (quidelines) analysis prototypes pre-series Pre-selection of Design for Definition of targets and **Design Modifications** Validation and Validation and Manufacturing, for Material and (iterative process) goals finetuning production Technology Assembly.. Comparative cost

Service

analysis

CAE for EcoDesign

- Design for Disassembly: be able to easily dismantle the item at end-of-life, making easy to recover recyclable parts
- Trial-and-error minimized, saving time and material for disruptive trials and prototyping
- Formulation of new materials made quicker by use of multi-scale virtual testing
- Possible to reduce the number of components by integrating in few multi-functional parts
- Assessing variability which is intrinsic in recycled materials, evaluating best/worst cases
- Optimize the shape of items by fully exploiting the potential of materials
- > Explore alternative solutions (what-if?)

Water Management Case Study

Case Study: Water meter diaphragm

Material: RADILON[®] DT RV300RKC2 (PA612 - GF30) Application: Diaphragm of water meter

The component lies between the water meter housing (brass) and a steel ferrule screwed onto it. It bears an internal pressure in different load cases, up to **40 bar** at a temperature up to **90°C** (peak load) Furthermore, it needs to be able to withstand a long-term pressure of **10 bar** at **70°C** for up to **10^5 h** (creep load).

Main conclusions

- > Rad. A, Rad. DT, Rad. Aestus have good chemical & hydrolisis resistance
- Rad. A, Rad. DT, Rad. Aestus and polymers in general have lower mechanical proprieties than metals which can compensated with geometry modifications of parts.
- Rad A, Rad DT, Rad Aestus can contribute to safer drinking water systems (lead free)
- > Polymers have significant lower environmental impact than metals
- CAE support enables to re-design robust polymers components taking advantage of all possible benefits offered by high performance polymers (incl.EcoDesign)

HIGH PERFORMANCE POLYMERS

paolo.rossi@radicigroup.com

HIGH PERFORMANCE POLYMERS

Q&A TIME

in f 🎔 🖸 🖸