Webinar: Minimize Fire Risk in USB-C Connectors

John Hsieh Advanced Engineering Manager, DSM Engineering Materials

April 14, 2021

DSM BRIGHT SCIENCE. BRIGHTER LIVING.

NUTRITION • HEALTH • SUSTAINABLE LIVING

Introduction

John Hsieh Advanced Engineering Manager DSM Engineering Materials

- Taiwanese, lived in Shanghai for 15 years
- Master degree in Mechanical Engineering
- 20 years' of experience in a broad range of electronics applications across the value chain (electronics devices PM, connector PM, industry marketing and then engineering material technical marketing)
- Joined DSM in 2013 at Shanghai, and then relocated to California in 2016, moved back to Shanghai again in 2018.

Quick facts and figures DSM Engineering Materials and DSM overall

Quick facts and figures Global footprint to support our customers

USB-C: The most popular data & powerful interface in the consumer electronics industry

One connector for many devices

Smartphone

The mobile phone evolution Thinnovation & Integration

Fast Charging standards

Charging Technology	USB 2.0 port	USB 3.0 port	USB 3.1 (USB-C +	Samsung Adaptive Fast	ung ive Oppo OnePlus Huawei Super WarpCharge SuperCharge		MediaTek PumpExpress 4.0	Qualcomm Quick Charge 5*	Votorola FurboPower 30	
				Charger	VUUC	30	2.0	(USB-PD)	(USB-PD)	(USB-PD)
Max Power	2.5W	4.5W	100W	45W	65W	30W	40W	25/ 30W	100W+	28.5W
Voltago	517	537	511 2011	5/0/2011	5/1037	517	5/ 9/ 10V	3V- 6V	5V/ 9V(USB PD) 3.6V~20V	5/ 9/ 12V
vonage	21	3 V	5 V - 20 V	5/9/201	5/ 10 V	51		(10-20mVper step)		
Current	0.5A	0.5/ 0.9A	0.5A/ 0.9A/ 1.5A/ 3A/ 5A	2/ 1.67/ 2.25 A	10/6.5A	2/ 6A	2/ 2/ 4A	5A+	5A+	5.7/ 2.85/ 2.15 A

- Qualcomm announced the Quick Charge 5 solution on July 27th, 2020. XiaoMi, ASUS, Lenovo and Samsung have announced to use this technology in their new flagship models.
- The USB PD and various fast charging standards increase the burning risk dramatically, and this brings a new challenge to smartphone and connector designers.

Qualcomm 5

The different generations of USB connector

Available receptacles for each connector

USB 1.0 USB 2.0 **USB 2.0** <u>USB 3.0</u> USB 3.1 USB 3.2 <u>USB4</u> Revised 2011 2019 Generations 1996 2001 2014 2017 1.5 Mbit/s (Low Speed) 1.5 Mbit/s(Low Speed) 12 Mbit/s 40 Gbit/s20 Gbit/s 5 Gbit/s 10 Gbit/s Data rate (Full Speed) (SuperSpeed+and 3 2 (SuperSpeed) (SuperSpeed+) (SuperSpeed+) 12 Mbit/s 480 Mbit/s Thunderbolt 3) (Full Speed) (High Speed) Type A Type B Type-A SuperSpeed 1234 Type-A Type A Type A 54321 Deprecated 54321 2 1 3 4 Type-B Standard нонон Type B Type B Deprecated Mini-A Mini-B Type C (enlarged) N/A 12343 -Mini A Mini-A N/A 12345 Mini Mini B Deprecated 12345 12345 12345 -----Micro-A Micro-B N/A Mini AB MIN-AB N/A12345 67 8910 12 345 Deprecated Micro B Micro B Micro N/A Micro-B SuperSpeed Micro AB Deprecated Type C Type C **USB 2.0 USB 2.0** USB 3.0 **USB 3.1** USB 3.2 **USB 1.0** USB4 Connectors receptacles plugs 1996 2001 Revised 2011 2014 2017 2019

Connector type Zoom in

USB type C connector is the only one interface to support USB 4 and onward version's USB devices.

Thunderbolt 3, 4 & USB 4

How Thunderbolt 4 is different than other solutions

Based on minimum solution requirements so people know what they are getting

		Thunderbolt™ 4	Thunderbolt™ 3	USB4	USB3/DP
Unrivaled	One universal computer port	•	•		
Simplicity	Universal 40Gb/s cables up to 2 meters in length	•			
	Accessories with four Thunderbolt ports	•			
Maximum	Minimum PC speed requirements	40Gb/s	40Gb/s	20Gb/s	10Gb/s
Performance	Minimum PC video requirements	Two 4K displays	One 4K display	One display (No Minimum)	One display (No Minimum)
	Minimum PC data requirements	PCIe 32 Gb/s USB 3.2 - 10Gb/s	PCIe 16 Gb/s USB 3.2 - 10Gb/s	USB 3.2 - 10Gb/s	USB 3.2 - 5Gb/s
	Required PC charging on at least one computer port ¹	•			
	Required PC wake from sleep when computer is connected to a Thunderbolt dock	•			
	Minimum PC port power for accessories	15W	15W	7.5W	4.5W
	Thunderbolt Networking	•	•		
Reliable Connectivity	Mandatory certification for all shipping computers, accessories and cables	•	•		
	Cable testing and cable quality audits for Thunderbolt cable manufacturers	•	•		
	Required Intel VT-d based DMA protection	•			
	USB4 Specification	Compliant	Compatible	Compliant	Compatible

Thunderbolt is used in high end laptop/ultrabook.

USB4 SI analysis

Both ForTii Eco E11 and Stanyl HFX33S meet USB 4 standard

ltem	Plug (Dk, Df)	Rec (Dk, Df)
1	LCP (3.4, 0.004)	LCP (3.4, 0.004)
2	E11 (3.6, 0.01)	E11 (3.6, 0.01)
3	HFX33 (3.48, 0.01)	HFX33 (3.48, 0.01)
4	LCP (3.4, 0.004)	E11 (3.6, 0.01)
5	LCP (3.4, 0.004)	HFX33 (3.48, 0.01)

¹⁰ * Performed by Dr. James Lin (Lotes Co., Ltd.)

USB type C connector challenges and solutions

Challenges with traditional materials

Thinner walls require high -strength and more durable materials

- Liquid crystal polymers (LCP) are widely used for micro -USB connectors
- USBC connectors require thinner walls than previous generations
- Fast charging increases the risk of connector defect
- Alternative materials are needed to produce reliable thin walled connectors

Addressing safety concerns New thinner devices pose fire risks

- Connectors with higher voltage rates and smaller pitch are more likely to result in electrical breakdown
- The tracking resistance of the insulator plastic is essential to reducing fire hazards

Source capabilities organized as profiles

				-
Hand-held devices, today's peripherals	Profile 1	5V @ 2A	10W Default start -up profile	
Tablets, VR/AR devices, most peripherals	Profile 2	5V @ 2A 12V @ 1.5A	18W	
Thinner notebooks, larger peripherals	Profile 3	5V @ 2A 12V @ 3A	36W	ļ
Larger notebooks, hubs, docks	Profile 4	5V @ 2A 12V @ 3A 20V @ 3A	60W Limit for micro A/B	
Workstations, hubs, docks	Profile 5	5V @ 2A 12V @ 5A 20V @ 5A	100W Limit for standard A/B	J

Requires new detectable cables for >1.5A or >5V

Understanding tracking Insulating plastics may create fire risks

Potential real -life failure mode

 The build-up of dust, sweat or moisture creates a conductive track on plastic materials — increasing the risk of fire

LCP after testing with 12 droplets — significant burn marks and electrical breakdown

Tracking resistance testing High CTI material decreases safety risks for connectors and devices

- Materials need a high comparative tracking index (CTI) to ensure products are safe
- Higher CTIplastic remains structurally intact even after testing of 60 droplets!

Insights

Charging electronics have been linked to device fires

- Some fires may result in property damage or injury
- If liable, manufacturers risk recalls, damage to their reputation and legal action
- Tracking posed fire risks with the previous generations of USB connectors. With USB-C, the smaller pitch and increased power density may further increase the risk of fire.
- "Home fires due to electrical failure or malfunction primarily involve some form of arcing. Arc faults can be produced by damaged connectors..."

Source: "Home Electrical Fires" report by NFPA

Charging cell phone blamed for fire that destroyed Frayser home

f y in p in comment in more

Redding firefighters knocked down a house fire Tuesday, Feb. 11, 2020 on Lacey Lane. (Photo: Damon Arthur/Record Searchlight)

nay Arthur d: May 30, 2019 / 01:41 PM CDT / Updated: May 30, 2019 / 06:15 PM CDT

USB type C Receptacle structure and challenges

Challenge 1: the over mold parts need to be bounded with 1 st and 2nd parts well

Challenge 2: Very thin wall in the both sides (0.1~0.2mm only), need very high flow material

Challenge 3: front end plastics to protect metal contact, need high wear resistance material to ensure the reliability and durability during mating/un-mating cycles.

Challenge 4: inappropriate tooling design may cause other issues such as void inside the housing or delamination

USB type C Plug structure and challenges

Challenge 5: There is welding line in the front end and very easy to be broken. The broken parts may cause connector malfunction. Need high welding line strength material

Challenge 6: The ribs are very thin (~0.15mm) and very easy to break during EMI spring assembly. Need high stiffness material

Challenge 7: Deformation in the front end of plug housing, need higher strength material

Overcoming plug housing challenges Meeting all durability, flow and toughness needs

- Molding thin ribs requires high flow, highly durable materials
- Final components must retain a balance between toughness and stiffness
- High-strength weldlines are very durable

Stanyl shows the highest weldline strength among competitors

Base polymer	[-]	PA	46	РА9Т	PA6T/ 66	LCP
GF content	[%]	20	35	45	35	35
<i>Mechanical property</i> weldline strength	[MPa]	60	50	22	40	17

Weldline strength measurement is based on UL tensile bar

Low weldline strength material shows cracking in plug designs

Different polymer structure leads to different material characteristics

LCP has very rigid molecular structure in both solid and melt state, therefore the very few entanglements and chemical interactions cause the very low weldline strength Stanyl/PA46 has flexural molecular chain, easier for entanglement, and Fast crystallization to solidify the entanglement area

Wear resistance comparison of Halogen Free V0 grades Stanyl shows the highest wear resistance

	Stanyl HFX33S GF20%	ForTii F11 GF30%	PA9T GF45%	PA6T GF35%	LCP GF+MD35%
Wear & Friction					
Depth	8µm	22µm	47µm	36µm	23µm

* Test Condition: 20g, Stroke 40mm, Speed 70cycle/min, 100Kcycles. Probe Pin Front end R 0.4mm

Full product portfolio for different design

Supplier			DSM		Competitor A	Competitor B	Competitor C	Standard
Grade	[-]	HFX33S	HFX61S	HFX82S	GP2450NH-2	FR52G35NHF	E471i	
base polymer	[-]		PA46		РА9Т	PA6T/ 66	LCP	
GF content	[%]	20	35	45	45	35	35	
Mechanical property								
TM	[MPa]	7400	11500	15000	15100	12800	13800	ISO 527-1/-2
TS	[MPa]	110	145	180	146	135	130	ISO 527-1/-2
EAB	[%]	2.7	2.1	2.2	1.5	1.4	2.5	ISO 527-1/-2

- Stanyl HFX33S has highest elongation at break ration and ductility among competitions
- DSM provides the product portfolio solution to meet different connector design needs

Blistering free solution JEDEC MSL-1 test

Sample: Connectors Material: Stanyl HFX 31S/33S/61S BK

pre-dried: 105°C *16hrs

Preconditioning: MSL-1(85°C×85%RH×168hrs) MSL-2(85°C×60%RH×168hrs)

Reflow profile:Sony profile with peak temp. 260℃

Reflow time: one time pass

Material	Sample type	Pre-conditioning	Water absorption(%)	Blistering			
HFX 61S with metal shell		95°C *950/ DII*169hm	0.4	0/9			
HFX 61S without metal shell		85 C * 85%KH * 108mrs	1.7	0/9			
HFX 61S with metal shell	connectors	95° ℃ *600/ DII*169hm	0.2	0/9			
HFX 61S without metal shell		83 C 100%RH 108hrs	0.8	0/9			
Note: The moisture absorption was measured by weight gain, which is only for reference due to metal pin included.							
Material	Sample type	Pre-conditioning	Water absorption(%)	Blistering			

* No blistering at the both receptacle and plug connectors test

Choosing the best material Robust plastics reduce fire risk

- Multiple considerations go into picking materials for USB-C components:
 - Receptacle tongues
 - Plug housings
- Choosing a halogen-free polyamide material reduces the risk of fire

COMPONENT	MATERIALS				
Cable	Conductor: copper with tin or silver plating				
	SDP Shield: AL foil or AL/ mylar foil				
	Coaxial shield: copper strand				
	Braid: Tin-plated copper or aluminum				
	Jacket: PVC or halogen-free substitute material				
Cable Overmold	Thermoset or thermoplastic				
Connector Shells	Stainless steel or phosphor bronze				
Plug Side Latches	Stainless steel				
Receptacle Mid-Plate	Stainless steel				
Plug internal EMC Spring	Stainless steel or phosphor bronze				
Receptable EMC Pad	Stainless steel or phosphor bronze				
Receptable Shell	Stainless steel or phosphor bronze				
Receptable Tongue	Glass-filled nylon				
Housing	Thermoplastics capable of withstanding lead-free soldering temperature				
Note: Halogen-free material	s should be considered for all plastics				

*Source: USB Type C specification release 1.0

Stanyl: Best polyamide for increased product safety and reliability

Highest weldline strength and best wear resistance

- High CTI reduces the risk of electrical tracking by 50%
- Excellent flow properties ensure high yields to lower molding costs
- Up to 50% more wear resistance than competing high temperature polyamides
- Unmatched reliability during use ensured by extensive mating cycle testing
- Proven track record of more than 300 million USB-C connectors with zero blistering or quality complains made by Stanyl for major OEMs

DSM Engineering Materials Your best partner for connector development

DSM

Bright Science in advanced materials Co-developing throughout the value chain

Bright Science in advanced materials

Delivering advanced material solutions for the world's leading manufacturers

Summary Why DSM Engineering Materials?

Materials trends in sustainability and technology evolve rapidly

Engineers face challenges in staying up to date with advanced materials science, innovations and shifts in legislation - and in choosing the right solution for their design challenges

DSM Engineering Materials supports with:

- Global footprint
- Broad materials portfolio
- Application expertise
- Design support
- Materials innovation
- Sustainable solutions
- Security of supply

•

Delivering:

A trusted partner with a strong track record

A preferred partner of leading multinationals, with a strong track record in automotive, electronics & electricals and food packaging.

DSM Engineering Materials Contact us and stay up to date

Homepage DSM.com/EngineeringMaterials

Product and technical data PlasticsFinder.com Ask a question or request a quote DSM.com/ContactDEM

Questions and Answers

John Hsieh John.Hsieh@dsm.com +86 13818977651

BRIGHT SCIENCE. BRIGHTER LIVING.™

