

Disruptive Innovation – Digital PP ACTUAL

David Tucker UL Prospector 5/25/2020

1 FORECAST 3D / AMERICAN CRAFTSMANSHIP

DAVID TUCKER

Education:

- B.S. Plastics Engineering
- B.S. Product Design Engineering
- Masters Business Administration
- M.S. Technology Management

Experience:

- Product Development
 - Passenger Vehicle Product Development
 - Commercial Vehicle Product Development
 - Electronics
- HP
 - Strategic Sourcing
 - 3D Print Market Development
 - Automotive Production Development Manager
- Forecast 3D
 - Director of Digital Solutions and Strategy

SPECIALIZING IN PRODUCTIZING DIGITAL INNOVATION

WHAT IS DISRUPTION?

Disruptive Innovation describes the process by which a product or service initially takes root in simple applications, moving upmarket, displacing established competitors.

Sustaining

Significant improvement on a product that aims to sustain the position in an existing market

Disruptive

Technology or new business model that disrupts the existing market

Incremental

Gradual, continuous improvements on existing products and services

Radical

Technological breakthrough that transforms industries and creates a new market

Technological Innovation

High

"DISRUPTIVE TECHNOLOGIES TYPICALLY ENABLE New Markets to Emerge." – Clayton M. Christensen, The Innovator's Dilemma

DISRUPTION **IN ACTION**

How did we go from physical to digital?

Mechanics of metal structure, displaced by Plastics innovation and combining of parts

> DVD or digital optical disc data storage was formally released

Connectivity, Cloud Servers, Low-cost processors, energy efficient processors,

Nitrate, Acetate, and Polyester Also, film developing technology

Polycarbonate innovation, and low-cost laser technology

PLASTICS MANUFACTURING

Injection Molding

- **1872** Patented the first injection molding machine
- 1939 Patented the injection molding of soluble cellulose acetate
- 1946 First screw injection machine, which created more precise control over the speed and quality of production
- **1979** Plastic production overtook steel production

ADDITIVE MANUFACTURING

- 1980 First Patents by Dr. Kodama Rapid Prototyping
- **1988** 3D Systems first commercialization
- **1988** First Powder Machines with SLS
- 2015 Area Based Powder
 Processing

WHERE ARE WE GOING?

- Mass-personalization and Customization
- Distributed Manufacturing
- Sustainability

OFFERINGS

Parts

Technology SLA DMLS

MJF FDM DLS Cast Urethane Binder Jet MIM/PM

Services

Engineering Application & Process Manufacturing Technology Product Design & Strategy Project & Program Management Subject Matter Expertise

Strategic Business Collaborative Development Radical Business Model Analysis Priority Partnerships

INNOVATIVE PRODUCTS OFFERED BY FORECAST 3D

NEXT DAY SERVICES

THE VALUE OF ONE-DAY TURNAROUND

Printing Prototype and **Production Parts for Shipment** Next Day

Fast-tracking human creativity and making any idea into a reality in one day

• Next day will allow clients to see, review, and optimize their parts and prototypes quicker than ever before • Speed of knowledge • Shorten time to market

TIME TO MARKET

In a classic study, McKinsey & Co found that a product that is six months late to market, earns 33% less profit over five years

- Competitive Advantage
- Reduce R&D costs (and waste)
- Improve customer satisfaction
- **Grow Revenue**
- **Grow Share**

INNOVATIVE PRODUCTS OFFERED BY FORECAST 3D

QUALIFIED FINISHES

QUALIFIED FNSHES

Ensuring Product Performance for Demanding Applications

Developing finishes to bring innovative ideas to life

- •
- Vapor Polishing •
- Performance Paint \bullet
- Flex Paint •
- Custom Dye •

Going beyond basic finishes and developing premium final parts and products

PERFORMANCE PAINT

- Injection-mold-like, glossy-smooth finish
- Best-in-class sealing, smoothing, and surface quality post-processing
- Capable of consistent, high-volume processing
- This manual process combines low volumes and high-quality spray coating equipment (automated, robotic coating options available for qualified serial production applications)

FLEX PAINT

- Developed by BASF as Ultracur3D Coat F, enhances the visual appeal of flexible components while enhancing the durability and quality of printed parts
- This manual process combines low volumes and high-quality spray coating equipment (automated, robotic coating options available for qualified serial production applications)
- Finish works with a variety of part preparation methods to achieve a smooth or more textured look and feel

VAPUK POLISHING

- Developed using AMT Post Pro 3D \bullet technology, modifies the part surface, resulting in an injection-mold-like smooth, glossy part appearance
- Using a fully automated, recipe driven, alcohol based chemical smoothing process
- This process is best utilized in high volume applications with prototype recipes available for discovery explorations

INNOVATIVE PRODUCTS OFFERED BY FORECAST 3D

DIGITAL WORKFLOW AND SIMULATION

DIGITAL WORKFLOW & SIMULATION

- Fully characterized materials with LS Dyna •
- Able to assess the performance of any prototype • and material
- Can test out different iterations prior to printing •
- Able to evaluate all the weak spots in your design • prior to printing
- Able to test out prototypes digitally, reducing time • and cost

Optimizing parts of the production journey through digital Simulation

TIME TO MARKET

In a classic study, McKinsey & Co found that a product that is six months late to market, earns 33% less profit over five years

- Competitive Advantage
- Reduce R&D costs (and waste)
- Improve customer satisfaction
- **Grow Revenue**
- **Grow Share**

INNOVATIVE PRODUCTS OFFERED BY FORECAST 3D

DIGITAL PP ACTUAL

DIGITAL - ACTUAL POLYPROPYLENE

Unlocking opportunity and improving sustainability

parts

- Ideal for a range of applications •
- •
- Biocompatibility •
- High Powder Reusability •
- Easy-to-Process material \bullet
- Lowest cost material for MJF •
- Low moisture absorption •
- Outstanding welding capabilities •

Automakers will be able to use the same polypropylene for prototyping and production of final

- Optimal balance of performance and cost

CORRECTING CAR PARTS WITH ACTUAL PP

Sustaining

Significant improvement on a product that aims to sustain the position in an existing market

Disruptive

Technology or new business model that disrupts the existing market

Incremental

Gradual, continuous improvements on existing products and services

Radical

Technological breakthrough that transforms industries and creates a new market

Hig

h

Technological Innovation

APPLICATIONS

Enabled by Polypropylene

Hybrid Manufacturing

Fusing injection molded parts with AM attachments using a digital attachment library

Polypropylene Prototyping

Versatile material that is ideal for a range of applications from consumer goods to automotive

Cut & Connect

Using digital modifications to build large parts, add new features, and weld AM sections to make final large component

Quick Correct

Scan and/or reverse engineer, create fixturing and manufacturing aids, cut and repair with AM components

MECHANICAL TESTING

MECHANICAL TESTING

- Meeting regulatory requirements; ulletmaintaining safety requirements • Selecting the appropriate materials and treatments for parts and products Evaluating product design and adjusting ulletfor improvement

- Verifying a production process •

Utilizing physical testing to give confidence on design methods

HOWAREWE MOVING TOWARDS MANUFACTURING?

As the digital environment continues to evolve, as industry leaders we evaluate and implement the components that fit our vision of the future.

This means...

- + Investing in strategic technologies
- + Developing certified solutions + Expanding value-add simulation + Focusing on end-to-end value stream solutions + Cultivating collaborative Channels

STEPPING CLOSER TO THE FUTURE WITH DISRUPTIVE INNOVATION

THANK YOU

DAVID TUCKER DAVIDT@FORECAST3D.COM