

Moving Beyond Metal for Consumer Appliances

Benefits of Utilizing Specialty Polymers

The Solvay Team

Global Marketing Manager Consumer Solvay Speciality Polymers

Neel Sheth is the Global Marketing Manager for Consumer Appliances. Neel has a B.S in Biotechnology and Chemistry from the State University of New York, Buffalo and an MBA in Finance and Marketing from New York University. Neel has diverse experience in the Pharmaceutical and Fine Chemical industries and joined Solvay in 2021 to drive the growth of Solvay Specialty Polymers in the Consumer Appliance segment.

Gayatri Anand

Technical Development Engineer Consumer Solvay Specialty Polymers

Gayatri Anand is a Technical
Development Engineer for high growth market
segments such as Consumer and Healthcare in North
America for Solvay Specialty Polymers based in
Alpharetta, Georgia. Gayatri has a B.S. in Polymer
Engineering and a M.S. in Plastics Engineering from
University of Massachusetts, Lowell. She joined Solvay
in 2018 and supports application development,
material science and provides technical customer
support.

Roger Nelson

Technical Development Engineer Consumer Solvay Speciality Polymers

Roger Nelson is a Technical Development Engineer for Solvay Specialty Polymers based in Alpharetta, Georgia. Roger has a B.S. in Chemical Engineering from Georgia Institute of Technology and a M.S. in Chemical Engineering from The Ohio State University. He joined Solvay in 1990 and supports applications, technical and material science development for customers in the Consumer and Construction market segments in North America.

Agenda

Dilemma of metal replacement – properties and comparative performance

Benefits of utilizing specialty polymers

Real world applications case studies

Case study 1 – Coffee machine handle

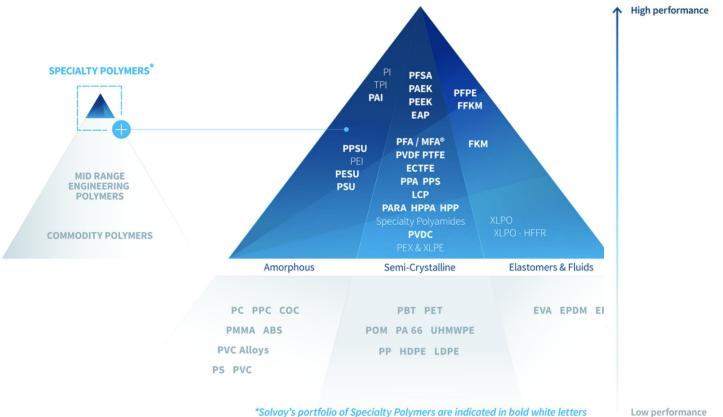
Case study 2 – Washing machine door hinge

Case study 3 - Support Brackets for Cages

Case study 4 - Vacuum cleaner

Case study 5 – Electronic instrument Chassis

Case study 6 – Air Fryer


Key factors to success

Working with Solvay

Conclusion and Q&A

Top Tier Portfolio of Specialty Polymers

Low performance

Metals: Challenges for Consumer Appliances

Titanium

- Difficult to machine (low thermal conductivity, work hardening, vibration. deflection, comparison with Alu in aerospace industry)
- Price

Zamak

 Weak in creep resistance vs temperature (75° to 120°C)

Magnesium

• Strength, flash

Aluminum

- Health issues (powder)
- High energy consumption for extraction

Copper

- Thermal conductivity
- Oxidation

Mechanical performance

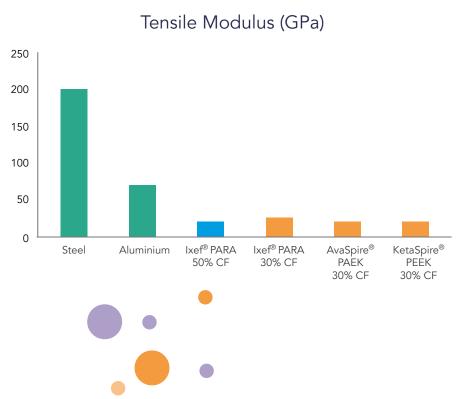
Material	Density	Strength	E-modulus
iviateriai	Delisity	(MPa)	(GPa)
Steel	7.8	330	206
Aluminum	2.8	320	70
Zinc Die-casting	6.6	280	70
Magnesium	1.8	225	40
Ixef [®] PARA & Amodel [®] PPA 50% GF	1.65	280	20

- + Moisture
- + Temperature

Polymers vs Metal: Performance Overview

	Attributes	Metal	Polymers	
Sustainability & Davies	Weight (density)	_	+	
Sustainability & Design	Design freedom	-	+	
Properties	Isotropic properties	+	_	
	Strength/stiffness	+	-	
REINFORCED POLYMERS	Fatigue behavior	-	_	
	Properties temperature /time dependent	+	_	
METAL METAL	Chemical resistance (+ corrosion)	-	+	
UNFILLED POLYMERS	Thermal conductivity / insulation	-	+	
	Electrical conductivity / insulation	-	+	
	Electromagnetic shielding	+	-	
	Friction/wear	+ /-	+ /_	
ELONGATION	Design freedom	+		
Dant a dansaria a	Secondary operations (if needed)	-	+	
Post processing	Dimensional stability/tolerances	+	-	
Cost alamenta	Fluctuating market price	-	+	
Cost elements	Cost	ary operations (if needed) – ional stability/tolerances + ing market price –		
Market aposific alements	Food contact	+/-	+/-	
Market specific elements	Biocompatibility	+/-		

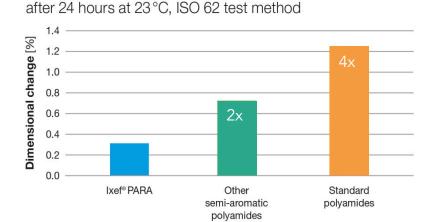
Solvay Polymers for Metal Replacement



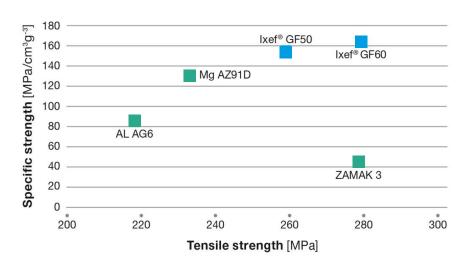
Material	Polymer Type	Description	Specific Gravity (gm/cm³)	Strength (Mpa)	E-modulus (Gpa)	Melting Pt. (°C)
Udel [®] PSU GF	Polysulfone	High Temperature Amorphous Aromatic Sulfone	1.4	97	6	N/A
AMODEL® PPA	Polyphthalamide	High Temperature Semi-crystalline Aromatic Polyamide	1.56	263	17.2	313
IXEF® PARA	Polyarylamide	High Modulus Semi-crystalline Aromatic Polyamide	1.64	<mark>280</mark>	20.0	237
omnix® hppa	High Performance Polyamide	Hot Water Moldable Semi-crystalline High Performance Polyamide	1.59	245	17	260
KETASPIRE® PEEK GF	PolyEther EtherKetone	Ultra-Performance Semi-crystalline Polyketone	1.53	174	11.2	343
AVASPIRE® PAEK GF	PolyAryl EtherKetone	Ultra-Performance Semi-crystalline Modified Polyketone	1.52	162	10.4	340

Moving Beyond Metal

Mechanical Performances

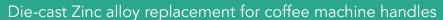

Specific Modulus (GPa/kg/dm³) 30 25 20 15 10 5 0 Ixef® PARA Ixef® PARA KetaSpire® Steel Aluminium AvaSpire® 50% CF 30% CF PAEK PEĖK 30% CF 30% CF

Ixef® PARA: strength and aesthetics for metal replacement



• Very low moisture absorption vs. other polyamides

Moisture absorption



- High tensile strength and modulus (exceeds PEEK)
- Low creep and low CLTE (similar to Aluminum)

Case Study 1 Coffee Machine

Ixef® PARA replaced Zinc Die-cast part

- Removed all die-casting steps
- Ixef® PARA was painted to appear just as the zinc part
- Elimination of die-casting resulted in significant savings

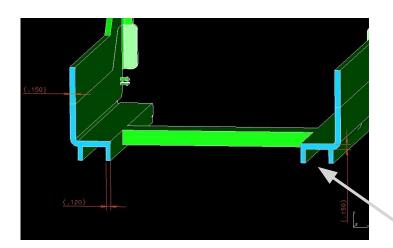
Case Study 2 Washing machine door hinge

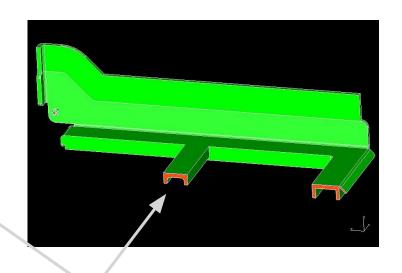
250,000 Parts	lxef [®]	Aluminium Alloy
Material Cost (\$)	52,000	40,500
Capital Investment (\$)	165,000	860,000
Machinery	100,000	830,000
Tooling	65,000	30,000
Operating Cost (\$)	16,500	121,500
Casting		40,500
Finishing		81,000
Total Cost (\$)	233,500	1,022,500
Cost Per Part (\$)	0.94	4.08

Moving Beyond Metal

Case Study 3 Support Bracket for Cage Racks

Replacing metal: the importance of redesign


Current Metal Design - Model View


Replacing metal: the results of redesign

High-performance Polymer Bracket Design Details of Design Changes: Nominal Walls

Rigidity = Modulus (E) x Moment of Inertia (I) For equivalency (E x I)_{Plastic} = (E x I)_{Metal} $I_{Plastic} = (E_{Metal}/E_{Plastic}) \times I_{Metal} = 10 \times I_{Metal}$

"U" channel configuration

Results of changing design to Polymers

Comparison of Stainless Steel Bracket Design to High-performance Polymer Bracket Design

Part	Predicted deflection under 10 lb. load (in.)	Part Volume (in ³)	Material Density (lbs/in ³)	Part Weight (lbs. & grams)
SS Design	0.005	3.513	0.285	1.00 (454)
High-performance Polymer Design (Amodel [®] PPA)	0.008	16.205	0.050	0.81 (368)

Case Study 4 Vacuum cleaner

Ketaspire® PEEK/Avaspire® PAEK replaced Metal impeller

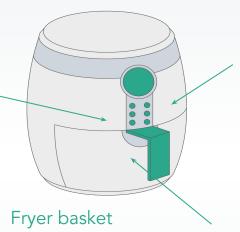
- Heat dissipation management
- Weight reduction
- Increased battery range and suction power

Case Study 5 Electric Instrument Chassis

Benefits of Udel® GF PSU

- Eliminate machining
- No corrosion
- 50 % weight reduction
- Low noise and vibration
- Easier manufacturing

Case study 6 Air Fryer functional integration



Oil collector

Ominx® HPPA

- High stiffness
- high heat resistance
- oil resistance
- high rigidity
- low moisture pick up
- ease of processing

Body and Structure Ring

Ryton® PPS

- temperature resistance up to 220°C
- chemical resistance to hot oil, water and steam
- cost efficient injection molding
- functional integration
- easy to assemble
- high stiffness

Amodel® PPA

- Temperature resistance up to 220°C
- oil, hot water, steam resistance
- dishwasher resistance
- passes drop tests
- food approvals
- cost down effect from metal

Key Factors to Success

- Apply team approach
- Use flow analysis and stress analysis to validate functionality and moldability
- MUST evaluate optimal polymeric design
- Select the right polymer for the job

Broad solutions portfolio

	Amodel® PPA	Ixef® PARA	Omnix® HPPA	Kalix [®] HPPA	Ryton® PPS	Xydar® LCP	Xencor TM PARA, HPPA PPA, PPS	Udel® PSU	Veradel® PESU	Radel® PPSU	KetaSpire® AvaSpire PEEK, PEAK	Solef® PVDF
Chemistry	~	~	✓	✓	/	✓	✓				✓	
Stiffness				/			✓			/	✓	
Creep	✓										✓	
Inherently V-0					~	✓	✓		~	~	~	✓
Aesthetics		✓					✓	✓	✓	✓		
High colorability	~	~	/	/			✓	/	~	~		
Transparency								✓	~	~		
Water & Steam	~					~	/	/	~	/	~	/
Temperature	~				~	✓	✓		~	/	✓	
F&W							✓				✓	/
Food Contact	~	~	/		/			/	~	~	✓	/
Injection molding	✓	✓	✓	/	/	/	✓	✓	✓	✓		/
Extrusion		✓			✓			✓	✓	✓	✓	✓

Customer Excellence through Application Engineering

We are your partner in the commercial journey providing added value with specialty polymers

Our expertise

Wide and differentiated portfolio of specialty polymers Consumer market expertise Clearly laid out life cycle view

Solution proposal

>

Prototyping

>

Mold Design, Definition and Testing

>

Part processing Support

>

Field follow up and Support

Material solutions that enhance the overall value for the customer

Virtual: expertise in Software based quick overview of application performance

Physical testing

Mold and part design review

Implementation of specific customer testing procedures

On-site support during processing (molding, extrusion) trials

Direct support to molders and processors

QC review and failure analysis (fractography, IR, etc)

A balanced presence to better serve our customers

2020 figures

NORTH AMERICA

EUROPE

LATIN AMERICA

ASIA PACIFIC & Rest of the world*

Solvay Today

We are a science company whose technologies bring benefits to many aspects of daily life.

Our innovative solutions contribute to safer, cleaner, and more sustainable products found in homes, food and consumer goods, planes, cars, batteries, smart devices, health care applications, water and air purification systems.

Our Group seeks to create sustainable shared value for all, notably through its Solvay One Planet plan crafted around three pillars: protecting the climate, preserving resources and fostering better life.

*2020 figures

Questions?

Progress beyond

Specialty Polymers

Worldwide Headquarters

SpecialtyPolymers.EMEA@solvay.com Viale Lombardia, 20 20021 Bollate (MI), Italy

Americas Headquarters

SpecialtyPolymers.Americas@solvay.com 4500 McGinnis Ferry Road Alpharetta, GA 30005, USA

Asia Headquarters

SpecialtyPolymers.Asia@solvay.com No. 3966 Jindu Road Shanghai, China 201108

Neel Sheth neel.sheth@solvay.com **Americas Headquarters** Alpharetta (GA), USA

Gayatri Anand gayatri.anand@solvay.com Americas Headquarters Alpharetta (GA), USA

Roger Nelson roger.nelson@solvay.com Americas Headquarters Alpharetta (GA), USA

Follow us on

