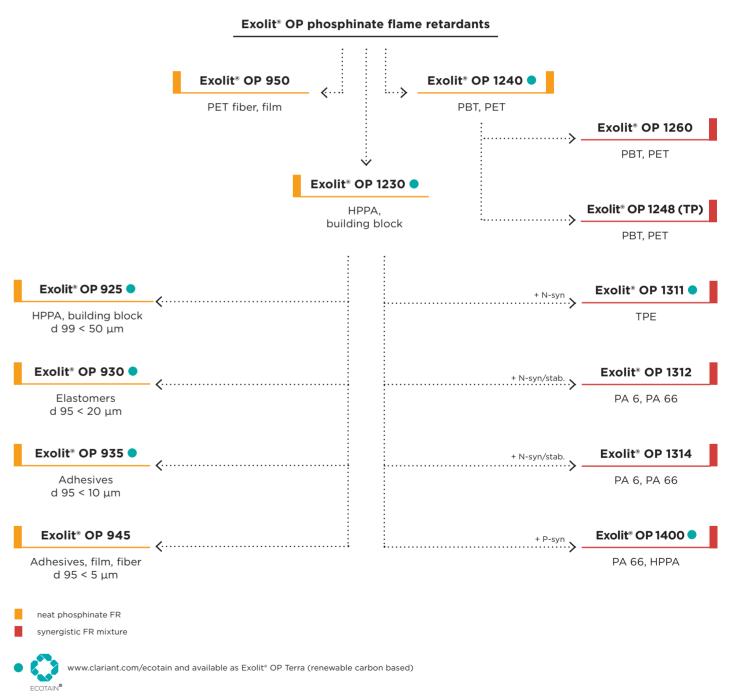


Built-in protection against ignition

Quick performance matters – and without a doubt, especially in areas where the protection of life and property is key. In that context, modern flame retardants have to fulfill demanding material requirements in addition to their most prominent role as an additive to slow down or even fully prevent starting fires.

Plastics generally exhibit excellent insulation properties combined with low weight and high mechanical strength – an important feature for electric and electronic (E&E), transportation and appliances industries. In these application areas, glass fiber reinforced polyamides are increasingly used due to their well-balanced properties. However, they can catch fire when exposed to an ignition source. In order to ensure fire safety, flame retardants are added to meet the requirements of various flammability standards.

INFLUENCE ON COMPOUND PROPERTIES


Mechanical and electrical properties, a good melt flow behavior and a robust processing window are critical points, especially in the electronics industry, where miniaturization plays a vital role. For electrical properties like comparative tracking index (CTI), Exolit® grades are amongst the best solutions available. Compared to other flame retardants, Exolit® products often have a smaller impact on mechanical properties due to their relatively low dosage. An additional feature is the low density, which can be a convincing reason for their use e.g. in the transport industry, where weight reduction is becoming more and more important.

INFLUENCE ON THE SURROUNDINGS IN CASE OF A FIRE

Already a small, starting fire develops smoke, and it is the toxic smoke that kills by far most fire victims. In addition, dense smoke can make visual orientation impossible and hinder the escape from e.g. a building, ship or train. If the smoke contains corrosive substances (e.g. from halogen-containing polymers or flame retardants), equipment not affected by the fire itself can also be damaged. Exolit® flame retardants show less toxic smoke development compared to halogenated solutions.

The Exolit® OP PRODUCT RANGE

Exolit® OP flame retardants offer tailor-made fire protection for thermoplastics in ignition-prone environments. They are available both as neat phosphinates and synergistic mixtures. Several grades carry our sustainability label EcoTain® and will become available as renewable carbon based types (Exolit® OP Terra).

EcoTain® SUSTAINABILITY

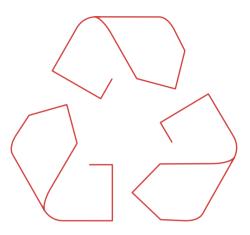
Sustainability is an integral part of Clariant's business approach, and EcoTain® is our label for sustainability excellence. It is one of our instruments for encouraging the development and use of sustainable solutions. Through EcoTain® we set an ambitious benchmark for products and solutions by considering the overall benefits and impacts across the entire value chain and product life cycle. Each product we label as EcoTain® undergoes a systematic, in-depth screening process using 36 criteria covering all three sustainability dimensions: people, performance and planet. EcoTain® products significantly exceed sustainability market standards, have best-in-class performance and contribute overall to sustainability efforts.

OUR HALOGEN-FREE EXOLIT® FLAME RETARDANTS CARRYING THE ECOTAIN® LABEL:

- Have excellent health and safety profiles
- · Contribute to saving lives and property
- · Have superior environmental compatibility
- Help customers' products to fulfill the requirements of eco-labels
- Show high material efficiency
- Have been developed in close cooperation with our customers

Flame retardants go renewable: **EXOLIT® OP TERRA**

Clariant is continuously developing products that are more beneficial for the environment. In addition to highlighting our most sustainable products with the Ecotain® label, we offer products based on Mass Balance certified renewable feedstock, which will be marketed under the name »Terra«. The ethylene content of these innovative, halogen-free flame retardants comes from renewable sources, such as waste cooking oil or plant-based oil. Problematic raw materials such as palm or animal-based oils are excluded.


In terms of physical, chemical and other application properties, Exolit® OP Terra is completely identical with regular Exolit® OP products. Therefore, no additional testing or approvals are necessary. Depending on the Exolit® OP Terra grade, from 50% up to 100% of the carbon content is certified as renewable-based.

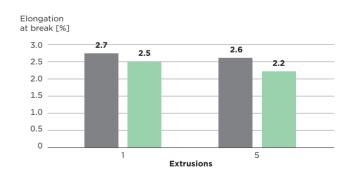
Flame retardants maintaining **FUNCTIONALITY AFTER RECYCLING**

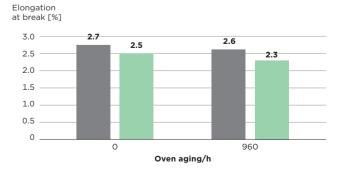
CASE STUDY: FLAME RETARDANCY AND RECYCLING

At the end of their lifetime, most flame-retarded plastic components from electronic waste are currently incinerated to recover energy. From an environmental and economic perspective, mechanical recycling offers several advantages. However, it requires an unmixed and clean material stream.

REQUIREMENTS:

- UL 94 V-0 maintained after aging and after multiple extrusion
- · Good mechanical properties of recycled materials
- · No severe color shifts

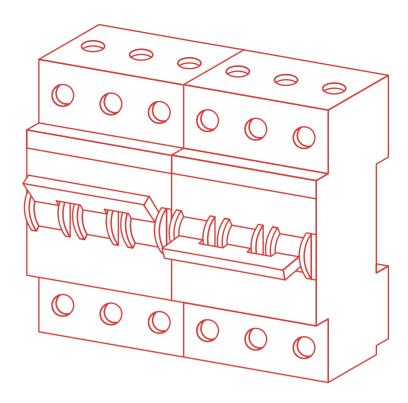



SOLUTION: EXOLIT® OP 1400 FOR PA6 OR PA66 GF

In a research collaboration with pinfa, Fraunhofer LBF confirmed that PA6 and PA66 GF containing Exolit® OP 1400 maintain their UL 94 V-0 rating when recycled back into production streams multiple times. In addition, the flame-retarding properties were maintained throughout the entire aging time of 1,000 hours at 120 °C. E-modulus and tensile strength decreased after the fifth processing cycle due to a reduced length of the glass fibers (from 210 μm to 136 μm), while elongation at break was largely preserved.

In addition, Exolit® OP is not subject to eco-design application restrictions like the upcoming EcoDesign Regulation for electronic displays based on the EcoDesign Directive (2009/125/EC) covering the recycling of plastics and limiting the use of halogenated flame retardants in enclosures and stands of electronic displays.

INFLUENCE OF RECYCLING ON ELONGATION AT BREAK


PA66 GF 30 Exolit* OP 1400

The Exolit® OP product range for **ALIPHATIC POLYAMIDES**

- UL 94 V-0 down to 0.4 mm
- CTI of up to 600 V
- · Low material density
- Low impact on mechanical properties
- Good colorability
- · Good contrast in laser marking
- · Halogen-free

	Melting point [°C]	EXOLIT® OP 1312	EXOLIT® OP 1314	EXOLIT® OP 1400
PA 4.6	295			
PA 6	222			
PA 6.6	260			
PA 6.10	220			
PA 6.12	215			
PA 10.10	200			
PA 11	198			
PA 12	178			
	PA 6 PA 6.6 PA 6.10 PA 6.12 PA 10.10 PA 11	PA 4.6 295 PA 6 222 PA 6.6 260 PA 6.10 220 PA 6.12 215 PA 10.10 200 PA 11 198	PA 4.6 295 PA 6.6 260 PA 6.10 220 PA 6.12 215 PA 10.10 200 PA 11 98	PA 4.6 295 PA 6 222 PA 6.6 260 PA 6.10 220 PA 6.12 215 PA 10.10 200 PA 11 198

bio-based polyamides

Clariant's Exolit® OP 1312, OP 1314 and OP 1400 are blends containing an organic aluminium phosphinate and synergists. They offer many advantages compared to other types of flame retardants on the market:

Compounds made with Exolit® OP have a low density and combine good mechanical properties with high CTI values. Exolit® OP 1312 is the most efficient grade regarding UL94 and glow wire ignition temperature (GWIT) test performance. Exolit® OP 1314 and OP 1400 provide enhanced thermal stability and are therefore especially suitable for high processing temperatures and compounds which are injection-molded into complex cavities. Exolit® OP 1400 extends the application range with its better stability to hot and humid environments.

Reinforced polyamides with UL94 V-0 classification down to 0.4 mm thickness can be achieved with the Exolit® OP products. Exolit® OP 1312 can be used to obtain a glow wire ignition temperature (GWIT) of 775 °C, optionally in combination

with further synergists. A glow wire flammability index (GWFI) of 960 $^{\circ}$ C can be attained with Exolit* OP 1312, OP 1314 and OP 1400 within the range of typical UL 94 V-0 dosages.

The main application of Exolit® OP is in glass fiber reinforced polyamides. The glass fiber content will typically vary from 10 to 50%. Exolit® OP can also be used in non-reinforced polyamides, resulting in a non-dripping V-0.

Flame-retarded polyamides with Exolit® OP can be used for laser marking on light and dark colors and show good contrasts. The compounds are suitable for laser welding. Polyamides with Exolit® OP achieve CTI values of 600 V.

The Exolit® OP product range for **ALIPHATIC POLYAMIDES**

CASE STUDY: CIRCUIT BREAKER

A circuit breaker is an automatically operated electrical switch designed to protect an electrical circuit from damage caused by excess current from an overload or short circuit. Its basic function is to interrupt current flow after a fault is detected. Whereas a fuse operates only once and then must be replaced, a circuit breaker can be reset (either manually or automatically) to resume normal operation.

PA 6 GF25 with Exolit OP 1312 - PV Fast Blue BG

PA 6 GF25 with Exolit OP 1312 -PV Fast Violet RL

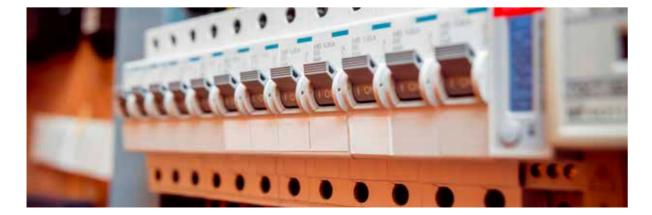
PA 6 GF25 with Exolit OP 1312 -PV Fast Pink E

PA 6 GF25 with Exolit OP 1312 - PV Fast Red B

PA 6 GF25 with Exolit OP 1312 -Yellow NR

PA 6 GF25 with Exolit OP 1312 - virgin

REQUIREMENTS:


- · UL-listed polymers, globally available
- Laser marking
- · All colors
- · High elongation
- CTI > 400 V
- · Cost-effective

SOLUTION:

EXOLIT® OP 1312/OP 1400 FOR PA 6 GF

- UL 94 V-0 rating from 0.4-3.2 mm thickness
- Suitable for all colors
- CTI up to 600 V
- Good mechanical properties
- Cost-effective
- Registered and available in all regions
- Clariant EcoTain® label and GreenScreen Benchmark 3 (pure phosphinate)

CASE STUDY:

RAST CONNECTORS FOR APPLIANCES

RAST connectors are connectors of the so-called »home appliance standards« RAST 2.5 and RAST 5. The abbreviation »RAST« stands for German language »Raster-Anschluss-Steck-Technik« or »grid connection plug-in technique«, the digits indicate the millimeter distance between the contact centers. Household appliances, commonly referred to as white goods«, form a key segment in the consumer goods market. These include a variety of larger appliances, such as washing machines and dryers, refrigerators and freezers, dishwashers and stoves or microwaves, as well as small appliances such as coffee machines, toasters, mixers, vacuum cleaners and razors.

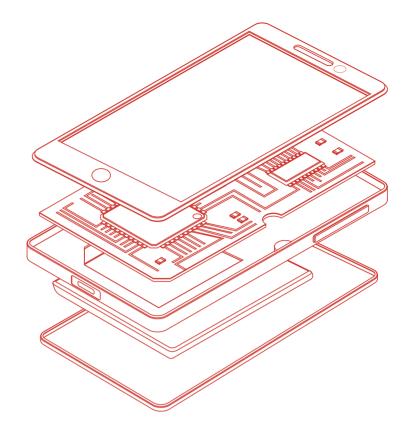
REQUIREMENTS:

- Meet UL, VDE, and CQC (China quality certification) requirements
- UL 94 V-0 and GWIT of 775 °C without flame compliant models
- Highly resistant to cold, dry heat, soldering heat, and humidity
- · High flowability

SOLUTION:

EXOLIT® OP 1312/OP 1400 FOR PA 66 GF

- UL 94 V-0 and GWFI 960 °C rating from 0.4–3.2 mm thickness
- GWIT of 775 °C
- Good mechanical properties
- Cost-effective
- · Registered and available in all regions
- Clariant EcoTain® label and GreenScreen Benchmark 3 (pure phosphinate)



The Exolit® OP product range for **AROMATIC NYLONS**

- UL 94 V-0 down to 0.4 mm
- · High thermal stability
- Excellent electrical properties
- Good colorability
- Halogen-free

Polyamides		Melting point [°C]	EXOLIT® OP 1312	EXOLIT® OP 1314	EXOLIT® OP 1400	EXOLIT® OP 1230
Aromatic	PA 4T	330				
	PA 6T	320				
	PA 9T	305				
	PA 10T •	315				
	PA 11T	315				
	MXD 6	243				
Amorphous	6I/X	250-265				

bio-based polyamides

Within the last years, high-performance polyamides (HPPA) have experienced a tremendous growth. The use of aromatic monomers like terephthalic acid or isophthalic acid increases their mechanical strength as well as temperature and chemical resistance. They are used wherever a standard polyamide or polyester is not stable enough. Due to their high thermal stability as well as their easy processing, HPPAs are a very competitive choice versus liquid crystal polymers (LCP).

Most of these HPPA compounds need to be flame-retarded according to UL 94 rating in order to fulfill the requirements in their specific applications. HPPAs used as insulating materials have to be stable against tracking (high comparative tracking index (CTI) is often required).

High processing temperatures and the trend towards miniaturization challenge the performance of flame retardants in HPPAs. Additionally, when applied in the SMT process (surface mounting technology) used for printed circuit boards, HPPAs have to resist high temperature in lead-free reflow soldering. Exolit® OP 1230 is a unique flame retardant which can withstand the demanding requirements of this high-end segment of engineering plastics. In a recent study, HPPA compounds with Exolit® OP 1230 passed the blistering test when pretreated according to JEDEC-J-STD 020C (MSL 2) and being exposed to the reflow soldering process with a peak temperature of 260 °C.

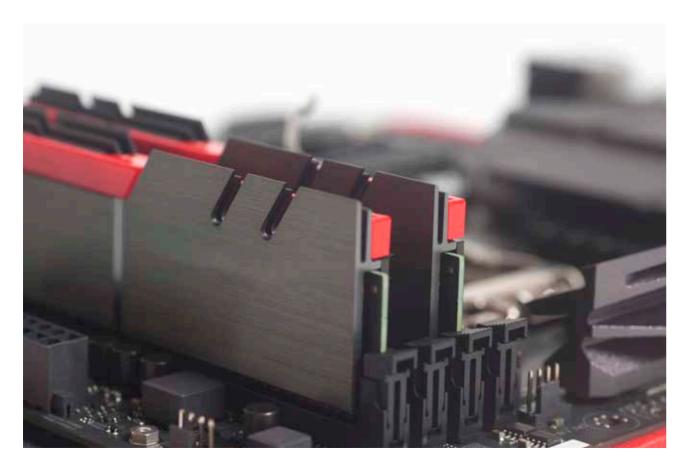
The Exolit® OP product range for **AROMATIC NYLONS**

CASE STUDY:

CONSUMER ELECTRONICS - DDR4 RAM

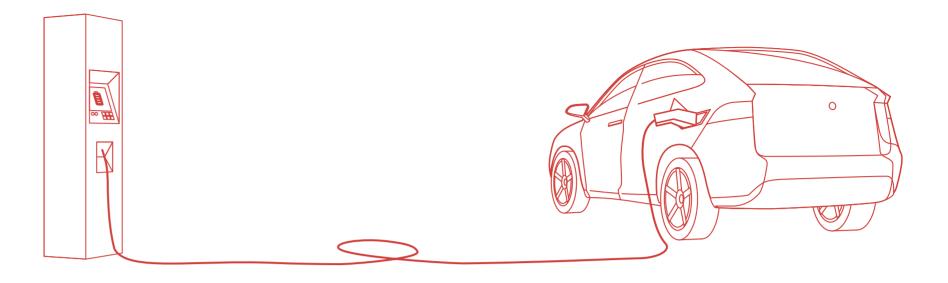
DDR4 RAM (double data rate random access memory) is a class of memory integrated circuits used in computers. The primary advantages of DDR4 over its predecessor, DDR3, include higher module density and lower voltage requirements, coupled with higher data rate transfer speeds. Main growth for DRAMs is seen in server applications.

REQUIREMENTS:


- UL-listed polymers, globally available
- High temperature resistance (SMT surface mount technology)
- Excellent molding capabilities and high strength characteristics
- Halogen-free engineering plastics with low eco-footprint

SOLUTION: EXOLIT® OP 1230 IN HPPA (HIGH-PERFORMANCE POLYAMIDE*)

- UL 94 V-0 rating from 0.4-3.2 mm thickness
- · Outstanding thermal stability
- No blistering in reflow soldering
- Clariant EcoTain® label and GreenScreen Benchmark 3


^{*} semi-aromatic polyamides or PA 46

The Exolit® OP/AP product range for **POLYESTERS**

- UL 94 V-0 down to 0.4 mm
- For reinforced and unfilled polyesters
- Excellent electrical properties (CTI up to 600 V)
- Good colorability
- Versatile use with synergists
- Halogen-free

Exolit® OP 1240 is a flame retardant based on an organic aluminium phosphinate. It can be easily compounded into polyesters and subsequently processed again to manufacture flame-retarded parts used in consumer or industrial products. Thermoplastic polyesters like PBT and PET feature excellent dimensional stability due to low moisture absorption, a good resistance against solvents and high insulating capacity, making them preferred polymers for many applications in the automotive, E&E and appliances industry. Many of these PBT or PET materials, especially glass fiber reinforced grades, need to be flame-retarded to fulfill international safety requirements like the classifications of the UL 94 standard. Exolit® OP 1240 can be used together with melamine polyphosphate and/or melamine cyanurate.

Exolit® OP 1248 (TP) and Exolit® OP 1260 are synergistic blends. PBT compounds with Exolit® OP 1260 achieve UL 94 V-0 with 18 wt% loading and show enhanced melt flow and mechanical properties. Exolit® OP 1248 (TP) shows an improved efficiency in UL 94 V-0.

Compared to a PBT containing a brominated flame retardant combined with antimony oxide, materials based on Exolit® OP 1240 can achieve CTIs of up to 600 V and in general have a lower density.

	Melting point [°C]	EXOLIT® OP 1240	EXOLIT® OP 1248 (TP)	EXOLIT® OP 1260	EXOLIT® OP 935	EXOLIT® OP 950*	EXOLIT® AP 462**
PET	250-260						
PTT •	220-230						
PBT	220-230						
PCT	270-285						
PLA •	150-160						
PHB •	175						
TPC	150-220						

- bio-based polyesters
- * Exolit® OP 950 melts at about 200 °C and gives a high-viscous, polymer-like molten mass
- ** Exolit® AP 462 is a microencapsulated ammonium polyphosphate

CASE STUDY:

HIGH VOLTAGE CONNECTORS FOR E-VEHICLES

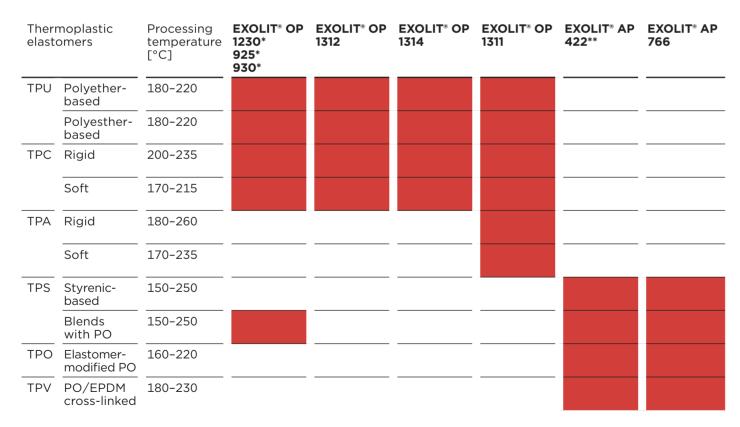
With the electrification of cars, many electricity-powered parts and high voltage connections will be integrated into cars, with the result that fire safety has become an inevitable concern and initiated plenty of investigations. Exolit® flame retardants bring state-of-the-art fire safety solutions without sacrificing the electrical performance of materials.

REQUIREMENTS:

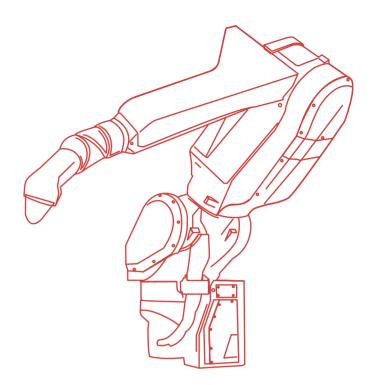
- UL 94 V-0 classified materials
- High comparative tracking index (CTI 600 V) to ensure safety against arcing at high voltages
- Mechanical stability and orange color fastness at elevated temperature
- Halogen-free chemicals and no emission of hazardous substances
- Good balance of mechanical performance
- Reliability over a temperature range from -40 °C to 150 °C

SOLUTION: EXOLIT® OP 1240 FOR PBT-GF

- UL 94 V-0 rating from 0.4-3.2 mm thickness
- CTI of up to 600 V
- No blooming nor mold deposit
- No copper contact corrosion
- Clariant EcoTain® label and GreenScreen Benchmark 3



The Exolit® product range for THERMOPLASTIC ELASTOMERS (TPE)


- UL 94 V-0
- Cable tests (VW-1, FT-2, FT-4) passed
- · Low smoke toxicity
- Good electrical and mechanical properties
- Good hydrolysis resistance
- Halogen-free

Thermoplastic elastomers (TPE) are materials combining the processing advantages of thermoplastics with the flexible, low modulus properties of elastomers. Block copolymer TPEs include thermoplastic polyurethanes (TPU), copolyesters (TPC) and polyether block amides (TPA). A huge number of TPE grades are on the market, ranging from shore A 10 to shore D 75. Exolit® OP can effectively balance mechanical properties and flame retardancy in TPEs. TPCs combine toughness and resilience with excellent resistance to creep, impact, tearing as well as flexural fatigue. Exolit® OP 1230 can effectively flame-retard these elastomers. A loading of 20–40% flame retardant is recommended depending

on the chemical structure of the polymer and the desired fire resistance. Mechanical and fire performance can be enhanced by using fine-grade phosphinate like Exolit® OP 930. Adding small amounts of PTFE can prevent dripping, an important criterion in the UL 94 test. The addition of nitrogen-containing synergists can help to improve the fire resistance. Flame-retarded TPEs are used for cable extrusion, wire coating, connectors, plugs, conveyor belts, corrugated pipes, etc. Flame-retarded TPU is also a base material for artificial leather.

^{*} We recommend to combine with flame retardant synergists to enhance flame retardant effectiveness. Please contact us for more information.

CASE STUDY:

SENSOR DATA CABLES FOR AUTOMATION

There is hardly an industry which does not need any sensors and cables transferring data and signals. This highly sophisticated technology sets demanding requirements on materials. TPU with its outstanding wear resistance is often chosen as jacket material for multi-conductor cables. Requirements on mechanical and electrical performance should not be compromised by high fire safety.

REQUIREMENTS:

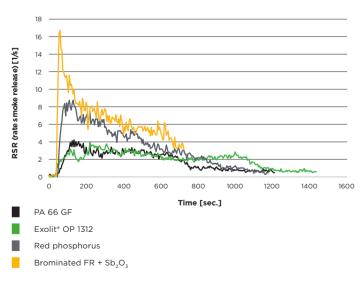
- Cable tests passed: VW-1, FT-2, FT-4
- Low smoke toxicity
- · High resistance to wear
- Oil resistance
- Halogen-free materials

SOLUTION: CUSTOMIZED FORMULATION BASED ON EXOLIT® OP FOR TPU

- Robust fire resistance with self extinguishing behavior: UL 94 V-0 non-dripping also in thin parts, high LOI, low heat release
- Cable test can be passed e.g. 4 mm three-wired cable
- · Non-corrosive smoke
- High elongation and balanced tensile strength with good aging behavior and hydrolysis resistance
- Clariant EcoTain® label and GreenScreen Benchmark 3

^{**} Basic material for developing individual intumescent formulations at customers.

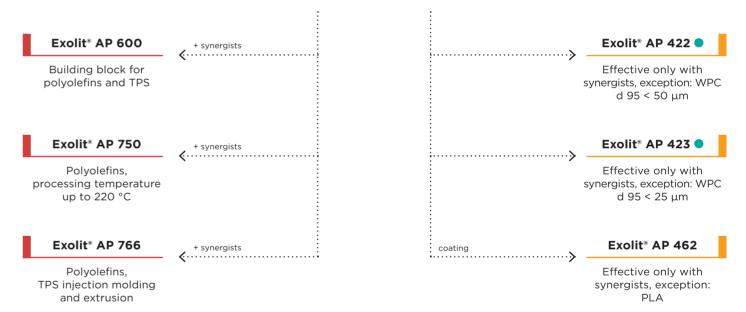
Exolit® flame retardants for **ROLLING STOCK APPLICATIONS**


Polymers with Excidensity and smoke flame retardants cowith red phosphor

Polymers with Exolit® flame retardants provide a lower smoke density and smoke toxicity than compounds with brominated flame retardants combined with antimony trioxide or compounds with red phosphorus.

Electrical parts molded with PA 66 GF containing Exolit® OP are compliant with the highest fire safety standard for rolling stock: category R22, hazard level 3 (HL3) according to EN TS 45545-2, the European standard for railway rolling stock.

In PBT GF category R22, hazard level 2 (HL2) according to EN TS 45545-2 can be achieved.


RATE OF SMOKE RELEASE OF PA 66 GF COMPOUNDS

Exolit[®] AP and AddWorks[®] solutions for **POLYOLEFINS**

Polyolefins can be efficiently protected with the synergist-enhanced flame retardants from our Exolit® AP range, selectively available with our EcoTain® sustainability label. Powerful protection is provided by our HALS-based solution from the AddWorks® range.

Exolit® AP Ammonium Polyphosphates

neat API

formulated synergistic FR mixture

www.clariant.com/ecota

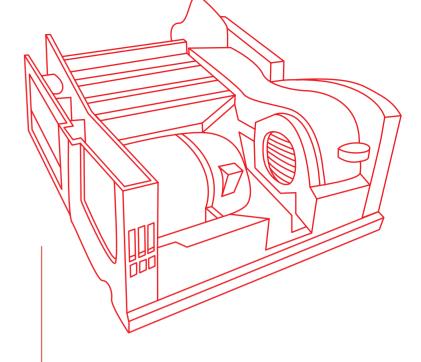
The Exolit® AP/AddWorks® product range for **POLYOLEFINS (MAIN APPLICATIONS)**

- UL 94 V-0 at 1.6 and 3.2 mm
- Low smoke density
- · Low smoke gas corrosivity
- Good electrical and mechanical properties
- Excellent UV stability
- Good recyclability
- Halogen-free

Polyolefin type		Processing temperature [°C]	EXOLIT® AP 750	EXOLIT® AP 766	EXOLIT® AP 422* 423*	ADDWORKS® LXR™ 920
EVA	IM, EX**	120-220				
	Films	120-220				
PE-LD	IM, EX	150-220				
	Films	150-220				
PE-HD	IM	180-230				
	Films	170-220				
PP	IM, EX	170-230				
	Fibers, films	170-230				
WPC***	EX	150-220				
TPO	Elastomer- mo- dified PO	150-220				
TPV	PO/EPDM cross-linked	180-230				

^{*} Key component for developing individual intumescent formulations at customers with formulation know-how of their own

EXOLIT® AP 750


- Standard grade for PP and PE
- High flowability for injection molding applications due to melting component
- Standard grade for **injection molding** applications
- Limited suitability for extrusion applications (PE-LD/EVA, PP copolymers possible; not low MFI PP)
- · Highest dosage requirements of product range
- Best flow properties due to melting synergist
- Lowest processing stability of product range in compounding (approx. 220 °C)

EXOLIT® AP 766

• Higher efficiency

21

- Suitable for glass fiber reinforced PP and polyolefin based elastomers
- Suitable for both injection molding and extrusion applications (with non-demanding extrusion requirements: low temperature, low shear)
- Highest FR efficiency of product range
- · Best efficiency in glass fiber reinforced PP compounds
- Product of choice for development of TPO and TPS formulations

In E&E equipment a variety of different thermoplastic materials is used. In many cases they need to be flame-retarded in order to comply with fire safety standards. Intumescent flame retardants like Exolit® AP 750/766 have been designed for polyolefins to pass the V-0 rating according to the UL 94 flammability test. In PP-based compounds loadings of 22–30% of flame retardant are needed to meet the test criteria.

Compared to the use of other halogen-free flame retardants like metal hydroxides, the Exolit® grades show a better processability. In addition, mechanical properties are less affected due to the lower dosage needed. In case of a starting fire Exolit® AP 750/766 products offer advantages compared to halogenated flame retardants. Peak heat release and smoke density from the polyolefins are much lower, resulting in a significantly reduced spread of flame and better chances for people to escape from a fire. Moreover, the lower smoke corrosivity can avoid severe damage of electrical equipment installed close to the fire source.

AddWorks® LXR™ 920

AddWorks® LXR™ 920 is an additive that acts simultaneously as a flame retardant and as a UV light stabilizer. Its innovative technology, based on polymeric aminoether-HALS (hindered amine light stabilizer), makes AddWorks® LXR™ 920 compatible with a variety of polymers, especially polyolefins.

The tailor-made AddWorks® LXR $^{\text{\tiny{TM}}}$ 920 can be added to polyolefin films to reach B2 classification according to the German DIN 4102 standard without influencing the transparency of the films.

^{**} IM = injection molding, EX = extrusion

^{***} Wood-plastic composites based on PE-LD, PE-HD and PP; Exolit* AP 422/AP 423 work on their own

Clariant development AND CUSTOMER SUPPORT

Our dedicated technical service can help you with your FR-compound development

Clariant offers a wide range of polymer additives: flame retardants, waxes, antioxidants, UV stabilizers, and antistatic agents. In order to efficiently respond to customers needs, Clariant's Additives Business Unit operates its own application technology plastics center.

Our dedicated technical service offers support regarding individual recipe development and optimization of flame retardant and additive packages.

State-of-the-art plastics processing allows compounding and masterbatch preparation including strand and under-water pelletizing as well as die-face cutting. Test specimens are produced via injection molding, profile extrusion and blow molding of films. Flammability tests (UL 94, Cone Calorimeter, LOI, GWFI/ GWIT, DIN 4102 B2, CTI, FMVSS 302) are complemented by a wide range of standard methods to characterize plastics properties (e.g. mechanical and rheological data).

Clariant's analytical labs assist with most suitable and up-to-date methods such as nuclear magnetic resonance (NMR) spectroscopy, high performance liquid and gas chromatography (HPLC, GC), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), elemental analysis etc., which are accurate and reliable analytical techniques for development work.

Glossary

APP	ammonium polyphosphate	PE-LD	low-density polyethylene
CQC	China quality certification	PET	polyethylene terephthalate
СТІ	comparative tracking index	РНВ	polyhydroxybutyrate
DDR RAM	double data rate random access memory	PLA	polylactic acid
DRAM	dynamic random access memory	РО	polyolefin
DSC	differential scanning calorimetry	PP	polypropylene
E&E	electric and electronic	P-syn	phosphorus synergist
EPDM	ethylene propylene diene monomer rubber	PTFE	Polytetrafluoroethylene
EVA	ethylene-vinyl acetate	PTT	polytrimethylene terephthalate
E-vehicle	electric vehicle	SMT	surface mounting technology
EX	extrusion	stab.	stabilized
FMVSS	federal motor vehicle safety standards	TGA	thermo-gravimetric analysis
FR	flame retardant	TP	test product
GC	gas chromatography	TPC	thermoplastic copolyester
GF	glass fiber	TPE	thermoplastic elastomer
GWFI	glow wire flammability index	TPO	thermoplastic elastomer based on polyolefin
GWIT	glow wire ignition temperature	TPS	styrenic based thermoplastic elastomer
HALS	hindered amine light stabilizer	TPV	cross-linked thermoplastic elastomer
HL	hazard level		based on polyolefin
HPLC	high performance liquid chromatography	UL	Underwriters Laboratories
HPPA	high-performance polyamide	VDE	Verband der Elektrotechnik, Elektronik und Informationstechnik
IM	injection molding	WPC	wood plastic composite
LCP	liquid crystal polymers	, .	r
LOI	limiting oxygen index		
MFI	melt flow index		

Hazard information

GHS classification class chemicals according to European Regulation (EC) No. 1907/2006 (REACH) and Regulation (EC) No 1272/2008 (CLP-Classification, Labelling and Packaging):

Exolit* OP 1312: Reproductive toxicity, Long-term aquatic hazard

Exolit* OP 1314: Reproductive toxicity, Long-term aquatic hazard

Exolit* OP 950: Serious eye damage, Short- and long-term aquatic hazard

Only if there is sufficient exposure, e. g. direct contact with the chemical, will the hazard properties materialize and pose harm to people or the environment

EXOLIT® FLAME RETARDANTS FOR THERMOPLASTICS

NMR

N-syn

PA

PBT

PCT

PE-HD

nuclear magnetic resonance

polybutylene terephthalate

high-density polyethylene

polycyclohexylenedimethylene terephthalate

nitrogen synergist

polyamide

CLARIANT PLASTICS & COATINGS (DEUTSCHLAND) GMBH Am Unisys Park 1 65843 Sulzbach am Taunus Germany

FLAME RETARDANTS CUSTOMER SERVICE FLAMERETARDANTS@CLARIANT.COM Phone +49 61 96 757 66 17

EXOLIT.COM CLARIANT.COM

This information reflects our current state of knowledge and only represents a general description of our products and their possible applications. Clariant assumes no liability for the completeness, correctness, accuracy, and suitability of this information and use of this information. It is the user's responsibility to assess whether a Clariant product is suitable for a specific application.* Unless agreed otherwise in writing, Clariant's general terms and conditions of sale, which are not modified or invalidated by this information, shall apply. The rights of third parties shall be observed. Clariant reserves the right to modify this information and the product information at any time, in particular as a result of changes to legal provisions. Safety data sheets, which include the safety measures to be observed when storing or handling Clariant products, are supplied with the delivery. For additional information, please contact Clariant.

- * For sales to customers located within the United States and Canada the following applies in addition: NO EXPRESS OR IMPLIED WARRANTY IS MADE OF THE MERCHANTABILITY, SUITABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE OF ANY PRODUCT OR SERVICE.
- ® Trademark of Clariant registered in many countries
- © 2019 Clariant Plastics and Coatings Ltd, Rothausstrasse 61, 4132 Muttenz, Switzerland

DA 4019 E | 09.2019