
DuPont Innovative Solutions for the Wire & Cable Market

November 10, 2021

About the Presenters

Barbara Meunier

EMEA Marketing ManagerElectrical & Electronics

DuPont Mobility & Materials

Maria-Luisa Paredes

EMEA Business Development Consultant for Wire & Cable

DuPont Mobility & Materials

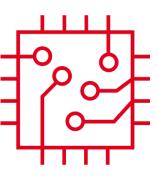
Klaus Kammerer

Senior Technical Consultant for Vamac® elastomers in EMEA

DuPont Mobility & Materials

Agenda

- DuPont and DuPont Mobility & Materials
- Market Trends and Challenges
- DuPont Performance Materials Portfolio for Wire & Cable
- Our Offerings and Capabilities for Wire & Cable Designs
- Q&A


DuPont Today: Premier Multi-industrial with Market-leading Businesses

Mobility & Materials \$4.0B

Water & Protection \$5.0B

Electronics & Industrial \$4.7B

\$13.7B 2020 Net Sales

23,000+ Colleagues 40+
Countries

~90
Manufacturing
Sites

Major R&D Centers

At a Glance: Mobility & Materials

Purpose: Transforming Industries and Improving Lives Through Material Science

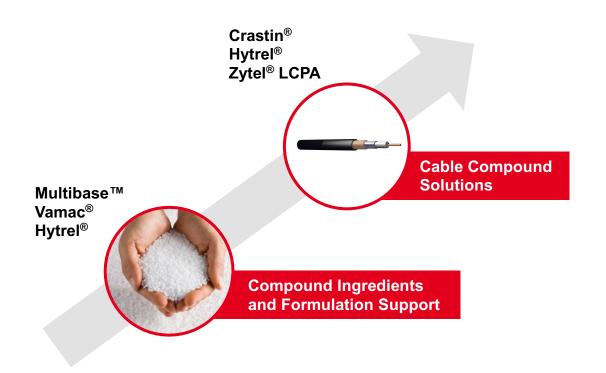
Wire & Cable Segment Key Messages

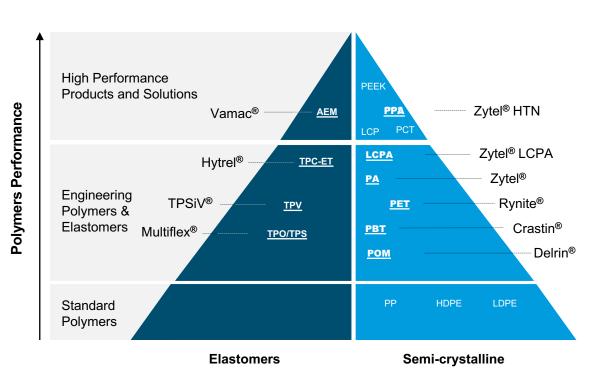

Our Purpose (Why)

Create a much safer and sustainable world

Our Goal (What)

Innovation driven to become No.1 provider of high performance, flexible, safe and reliable solutions for the wire & cable industry




Our Approach (How)

- Build Capability
 Continuously build our capability on flexible solutions including NHFR, sustainable (bio-based, recyclable) and high temperature resistance
- Strengthen Collaboration
 Build key accounts and channel management center of excellence
- Focus on Strategic Market
 Deliver growth on the identified
 strategic market and application

Addressing Needs for the Entire Value Chain

DuPont Solutions for Wire & Cable

Hytrel®: Thermoplastic polyester elastomer

Vamac[®]: Ethylene acrylic elastomer Crastin[®]: Polybutylene terephthalate

Zytel® **LCPA**: Long chain polyamide Multibase™: Silicone masterbatches

Segment Overview – Key Applications

Optical Fiber Cables

Focus: Thinner wall designs, NHFR, and low smoke solutions

Key offerings: Hytrel®, Crastin®

Industrial

Focus: Higher flex fatigue and media resistance, high continuous use temperature **Key offerings: Hytrel®, Zytel® LCPA**

Automotive and New Energy Vehicles

Focus: Thinner wall designs, high continuous use temperature, media resistance **Key offerings: Hytrel®, Vamac®**

Transportation

Focus: NHFR & low smoke solutions **Key offering: Vamac**®

HFFR Modification

Focus: Improved processability, improved flammability in PO NHFR formulations **Key offering: Multibase**™

Consumer Electronics

Focus: NHFR, low smoke and bio-based solutions **Key offering: Hytrel**®

Major Trends in Wire & Cable

Digitalization

FTTH march to continue
5G accelerating worldwide
Growth of hyperscale data centers
loT devices
Densification of access networks

Mobility

Electrification
Charging infrastructure

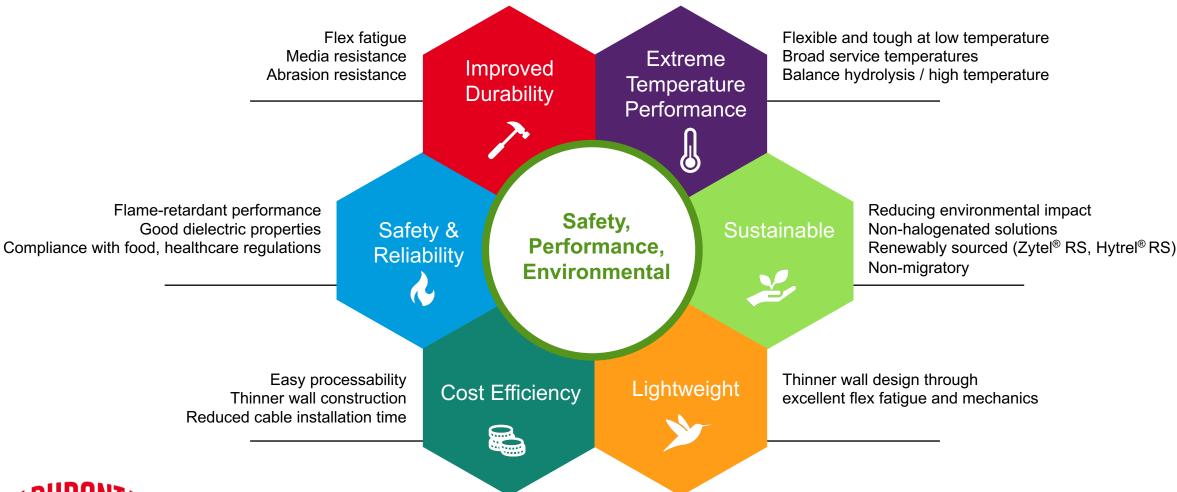
Thinner, lighter solutions – minimize carbon footprint

Industrialization & Automation

Factory automation

Data communication technology

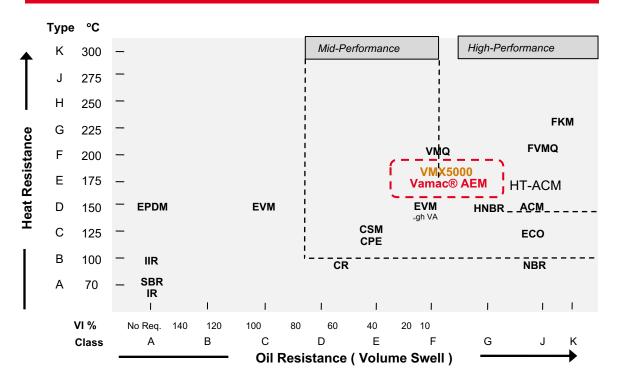
Safety & Sustainability


Environmental awareness

Energy transition:
renewably sourced
Fire performance and hazards

Wire & Cable Industry Challenges and DuPont Solutions

Our Cable Insulation and Jacketing Materials Are at the Core of Strong, Flexible, Durable Connections Around the World


Vamac®

Flexible Elastomer Solutions for Wire & Cable Insulation and Jacketing

Vamac® – Ethylene Acrylic Elastomer

Vamac[®] is an **ethylene acrylic elastomer** used in applications requiring **heat and chemical resistance**, and specific rubber-like qualities.

¹ Classification inspired by ASTM D2000 standard

Vamac® for HFFR Wire & Cable Formulations

Vamac[®] elastomers are used as the **base polymer** for cable sheathing or jacketing thermoset elastomer compounds for <u>highly flexible</u>, heat- and oil-resistant cables.

Vamac[®] provides an excellent alternative, when decomposition products (siloxanes, etc.) from silicone cables are causing problems.

Compounds based on Vamac® have proven records in **flame-retardant**, **low smoke**, **non-halogenated applications** to provide an excellent characteristic in combination of:

- · Oil resistance
- Heat resistance
- Good low temperature flexibility

Vamac[®] is formulated with curatives, fillers, antioxidants, flame retardants, plasticizers, and process aids, depending on end-use requirements.

DuPont offers support in formulation development and selection of additives suitable to this high performance, high heat elastomer.

² Maximum temp, at which a vulcanizate can be aged for 70 horrs and still retain at least 50% of its elongation

³ % volume swell in ASTM IRM 903 Oil. 70 hrs exposure

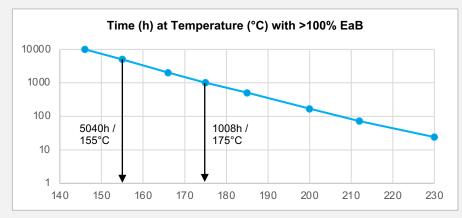
Benefit of Vamac® for NHFR Wire & Cable Compounds

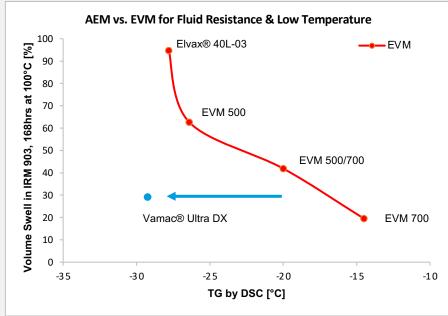
Advantages of Vamac®

General Properties and Processing

- Highly flexible down to -40°C (50-95 Shore A)
- High temperature resistance (Class D 150°C up to >5000 h)
- Resistant to variety of fluids (lubricants, diesel, battery acids, engine coolant, salt water, and various oils, etc.)
- Good **abrasion** resistance and electrical **resistivity** (>10¹² Ohm-cm)
- Ozone and weather resistance
- Easy to process (fast extrusion speed with smooth surface)
- Curing flexibility (CV or E-beam)
- Colorful and applicable to thin-wall

Fire-related Properties

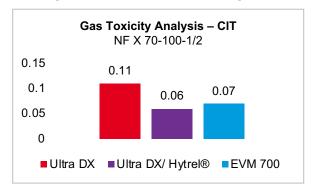

- Non-halogen
- Flame retardant (LOI > 35, UL-94 V-0)
- Low smoke generations
- Low fire hazard / toxic gas

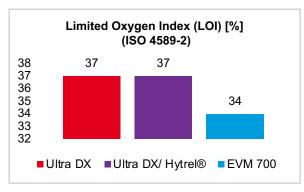


Heat Resistance, 60 Shore A Vamac Ultra DX Compound

Oil Resistance / Low T Flexibility, Comparison to EVM

Vamac® compounds will have a ca. 10°C lower Tg at a comparable oil swell to EVM and a ~20-30% better oil resistance at the same Tg as EVM.


Typical Properties of a HFFR Vamac® Ultra DX Compound

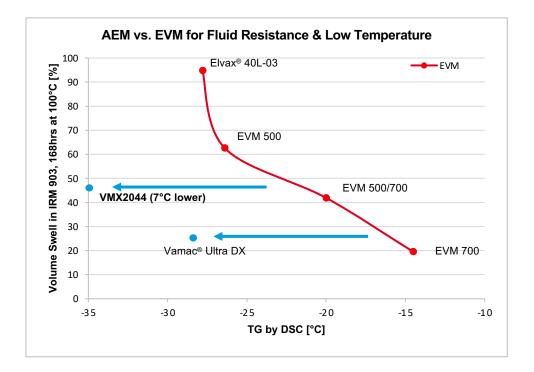

Mechanical Properties of Vamac[®] and its Blends in Comparison to EVM Compounds

	Vamac® Ultra DX	Vamac® Ultra DX / Hytrel® 4056	EVM 700
Press-Cure 10 Minutes at 180°C		•	
Tg by DSC [°C]	-28	-29	-16
Low temperature bend test -30°C	Crack	no crack	Crack
Tensile Properties RT			
Hardness Shore A	74	92	84
Tensile Strength [MPa]	8.7	8.5	10.6
Elongation at break [%]	211	175	172
Modulus at 50 % [MPa]	2.9	6.6	5.6
Modulus at 100 % [MPa]	6.0	8.3	9.2

Hytrel® 4056 can be used in blends with Vamac® dipolymer, to formulate compounds where excellent heat and oil resistance, low temperature flexibility, and low fire hazard properties are key requirements.

Flammability Performance of Vamac® and its Blends in Comparison to EVM Compounds

	Vamac® Ultra DX	Vamac® Ultra DX / Hytrel® 4056	EVM 700
Optical Density (25kW/m²) - ISO 5659-2			
Dsmax	20	21	218
VOF4	7	7	9
Cone Calorimeter (25kW/m²) - ISO 5660-1			
Total Heat Release THR [MJ/m²]	37	38	35
Total Smoke Release TSR [m²/s]	311	295	791
MARHE [kW/m ²]	61	67	51


Vamac[®] is halogen free, shows low toxicity, and can be filled with high amount of ATH. Compounds based on Vamac[®] have high LOI, low smoke, and small total heat release.

Innovation – Vamac® VMX2044

Benefits of Vamac® VMX2044

- Better processing of highly filled compounds for smaller cable diameters through lower Mooney viscosity
- Possibility to extrude thinner cable diameters compared to amorphous EVM
- Reduced weight through **lower compound density** (~3% lower in identical formulations)
- Better flexibility at low temperature with its Tg, 7°C lower than Vamac® Ultra DX
- Improved resistance to water-based fluids through lower swell compared to higher MA Vamac® polymers
- Comparable properties after heat aging (better elongation at break, slightly lower tensile strength) like higher MA Vamac[®] grades

Formulation	Phr
Vamac® Ultra DX / Vamac® VMX2044	100
Armeen 18D PRILLS	0,5
Stearic Acid Reagent (95%)	1
Ofalub SEO	1
Naugard 445	1
Martinal OL 111 LE	150
Luperox® 101 XL 45	5
Silanogran HVS	2
Vulcofac TAIC 70	1,43
Sartomer 350 (SR 350)	1

Vamac® for EV/HEV Battery Cable

Why Vamac[®]?

Improved Durability

- Operating at temperatures generated by high voltage electric current
- Outstanding chemical resistance

Lightweighting

Allowing thin wall insulation with smaller diameters

Fast and Easy Assembly

Enabling easier installation around small radius in confined spaces

Safe and Sustainable

Halogen free, flame retardant

Cost Efficiency

Thinner wall design

Vamac® Features

- High temperature resistance, 150°C 3000h (Class D ISO 6722)
- Outstanding flexibility at low temperature
- · Excellent abrasion resistance
- Resistant to battery acids, oils, brake fluids, window washer and cleaning fluids, salt water
- Halogen free, compatibility with flame-retardant fillers
- · Ease of crosslinking with electrons

Key Grades: Vamac® Ultra DX / Hytrel® 4056

Vamac® for Rolling Stock

Why Vamac®?

Durability

Outstanding chemical resistance

Lightweighting

Allowing thin wall insulation with smaller diameters

Fast & Easy Assembly

Enabling easier installation around small radius in confined spaces

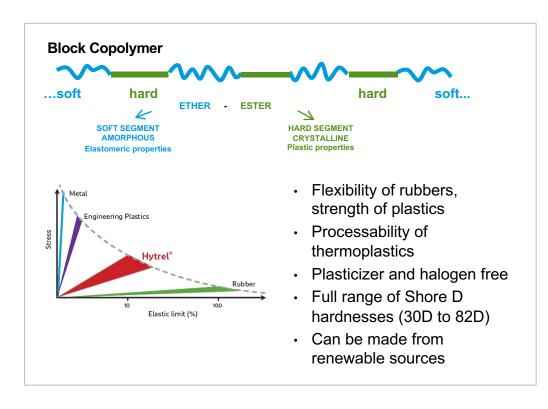
Safe & Sustainable

- Halogen free, flame retardant
- High fire retardancy

Vamac® Features

- · Outstanding flexibility at low temperature
- · Excellent abrasion resistance
- Resistant to battery acids, oils, brake fluids, window washer and cleaning fluids, salt water
- · Halogen free, compatibility with flame-retardant fillers

Key Grades: Vamac® Ultra DX / Hytrel® 4056


Hytrel®

Flexible Thermoplastic Solutions for Wire & Cable Insulation and Jacketing

Hytrel® – TPC-ET Thermoplastic Elastomer

Hytrel®, Versatile, Resilient, Durable Copolyester

Hytrel® Key Properties for Wire & Cable

- Flexibility and resilience
- Broad service temperature (-40°C to 150°C)
- Excellent low temp flexibility and toughness
- · Excellent flexural fatigue resistance
- · Resistant to tearing and flex cut growth
- · Excellent creep resistance
- Highly resistant to hydrocarbons and other fluids
- Good noise and vibration dampening at low temperatures

Materials	Flex	Abrasion	FR	Oil	Fuels	Brake Fluid	Acid/ Alkalines
FEP	+	++	++	++	++	++	++
SR-V	+++	+	+	+	+	+	-
PTFE	+	++	++	++	++	++	++
HYTREL [®]	++	+	+/- ^X	++	++	+	+
TPE-U	++	++	-	++	++	+	+
PE-X	+	+	+	+	+	-	+
PO-X	+	+	+	+	+	+	+
EVA-X	+	-	-	+	-	-	-
PP	+	+		+	+	-	+
PVC-P	+	+	+	+	+	-	+
PA	+	++	-	++	++	+	+
PE	+	+		-	+/- ^X		+
PVC	+	+	+	+	+	_	+

X Application dependent

Benefits of Hytrel® for Wire & Cable

Durable

- Strength and flexibility without plasticizers, even at low T°
- Abrasion resistance
- Excellent heat and chemical resistance
- Outstanding flex fatigue and cut-growth resistance

Fast and Easy Assembly

- Outstanding flexibility
- Specific grades modified for easy peel, no tools needed for confectioning and easy installation

Lightweighting

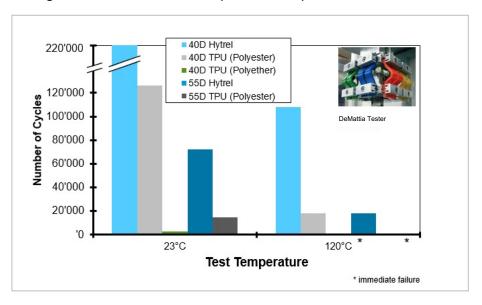
· Thinner wall through excellent mechanics and flex fatigue

Safe and Sustainable

- · Halogen free, flame retardant possible
- Non-migratory (no plasticizer)
- · Renewably sourced availability
- RoHS compliant

Cost Efficiency

- · Easy processing
- Thinner wall possibilities



Main Applications Include:

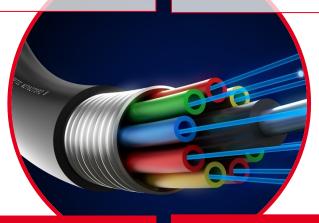
- Optical fiber cables
- Robotics
- EV infrastructure
- Transportation cables
- Renewable energy
- · Automotive high temperature cables

Why Select Hytrel® vs. TPU for Cable Design?

- Better low temperature flexibility
- Better snapback performance
- Improved flex fatigue and cut-growth resistance
- · Better creep resistance
- · Higher continuous use temperature capabilities

Hytrel® for Optical Fiber Cables

Tight Buffer Solutions


Hytrel® 5556, 6356, 7246, or 8238

- Flexibility and strength
- Good tear resistance
- Low CLTE

Easy Strippable Solution

Hytrel® 8351 for Mini Loose Tubes

- · Low processing temperature
- High flexibility and dampening
- UV stability
- Strippable without tools

Alternative to PA12

Hytrel® 8238

Translucent Applications

Hytrel® HTR6108

Benefits of Hytrel® for Tight Buffer and Mini Loose Tubes

- · Low shrinkage
- Protects fiber from mechanical damage & external environment
- · Easier routing: thinner wall designs
- Long life, durable

Easy Handling for Installation

- · Good balance of flexibility and strength
- Strippability during installation
- Friction against duct (installation)
- Good tear resistance

Easy Processing & Colorability

- Thermoplastic extrusion process
- · Thin wall, smooth surface aspect
- Plasticizer free

Long Lasting Solutions vs. PVC or Polyolefin-based Materials:

- Stronger resistance to heat exposure
- Better flexibility, especially at low temperatures

Hytrel® for EV Infrastructure Cables

Hytrel[®] Benefits for Signal Core Insulation

Durability

- Excellent abrasion resistance
- Hydrolysis resistance
- Flex fatigue resistance
- Coilable

Safe and Sustainable

Halogen free

Cost Efficiency

Excellent processability

Hytrel® for Dynamic Cables – Offshore Wind and Marine Energy

Hytrel® Benefits for Insulation

Durability

- Outstanding flex fatigue over time in a constantly moving environment
- Resistance to salty water
- Good dielectric strength

Safe and Sustainable

Halogen free

Cost Efficiency

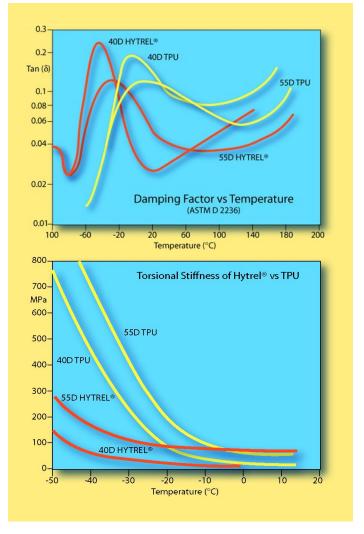
- Processability
- Excellent performance without crosslinking process

Hytrel® for Robotics & Automation

Hytrel[®] Benefits for Drag Chain Cables

Durability

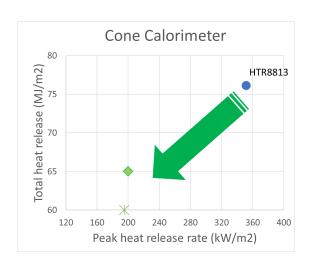
- Outstanding flex fatigue resistance
- Stable electrical properties
- Hydrolysis, chemical, and oil resistance
- High continuous use temperature capabilities

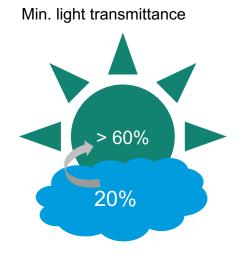

Safe and Sustainable

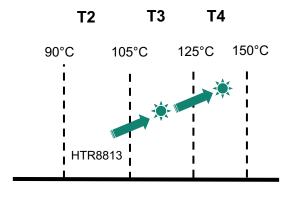
- Halogen free, low smoke
- Plasticizer free

Cost Efficiency

Easy processability


New Thermoplastic Elastomer NHFR Developments Addressing Wire & Cable

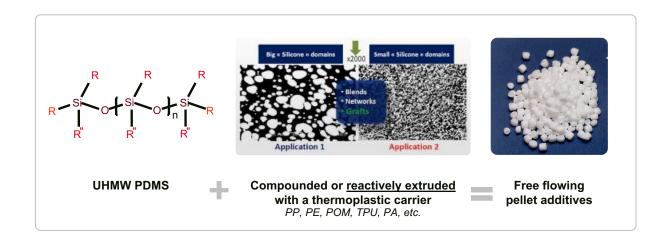

Thin Wall


Heat Release

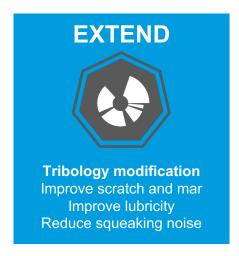
Smoke

High Temperature

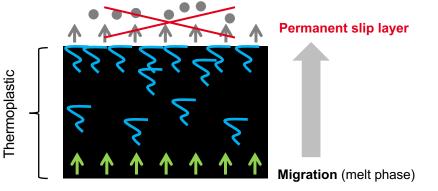
Multibase™


Additive Solutions for Wire & Cable Halogen-free, Flame-retardant Compounds

MultibaseTM Silicone Masterbatches


What are Silicone Masterbatches?

- Blend of a high amount of ultra high molecular weight polidimethyl siloxane (UHMW PDMS) and polymer carrier
- Can be either a dispersion of silicone or copolymer silicone in a thermoplastic
- SiMB are free flowing pellets, and can be used in any conventional thermoplastic transformation process and feeders
- Typical additive use rate: 1-3%


Non-migrating in solid phase

Benefits for Thermoplastics

Silicones have a very good stability over time, temperature, and radiations which makes them suitable for durable performance requirements.

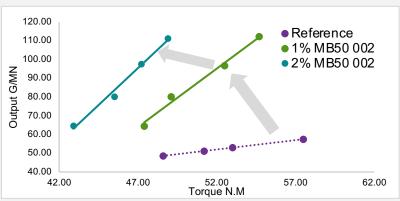
MultibaseTM Silicone Masterbatches for Wire & Cable NHFR Compounds

High levels of FR filler loading (>60% ATH or MDH) strongly impact polymer rheology, leading to processing issues during cable extrusion: Low output, melt fracture, rough cable surface

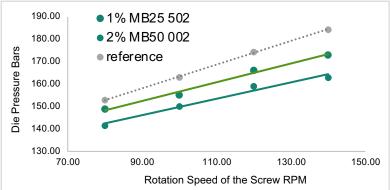
Addition of Multibase[™] silicone masterbatches in polyolefin NHFR compounds helps re-establish stable rheological conditions and resolves process issues.

During Cable Extrusion Process

- Optimized rheological conditions
- Higher throughput
- Lower energy consumption, reduced torque
- Die pressure reduction


On the Cable

- Smooth cable surface (reduced melt fracture)
- Better cable performance due to good filler dispersion
- Low order of toxicity (no toxic fumes while burning)
- No exudation of additive


HFFR Compound Type	Solution
PE-based HFFR	MB50-002
PP-based HFFR compounds	MB50-001
EVA-based HFFR compounds	MB50-320

1-1.5% use rate

Multibase™ SiMB Reduces Torque at Given Throughput While Improving Surface Aspect (Reduce Shark Skin)

Multibase™ SiMB Allows Increasing Screw Speed and Reduces Die Pressure

Conclusions

Solutions for Optical Fiber Cables

Materials for Improved Design Flexibility, Thin Wall Extrusion, Temperature Resistance, Easy Handling and Installation

Tight Buffer

Hytrel® Grade	Density gr/cm³	MFR (g/10min, 2k16)	Flex Mod (Mpa)	Hardness Shore D	Stress@ Break (Mpa)	Strain@ Break (%)
5556	1.19	7.8 @ 220C	190	55	40	>300
5555HS	1.19	8.5 @ 220C	195	55	35	>300
6356	1.22	9 @ 230C	290	63	43	>300
7246	1.26	13 @ 240C	550	68	50	>300
8238	1.28	12.5 @ 240C	1150	76	46	>300
HTR6108(*)	1.25	5.1 @ 190C	170	61	32	290

^(*) Translucent applications

Mini Loose Tubes

Hytrel® Grade	Density gr/cm³	MFR (g/10min, 2k16)	Flex Mod (Mpa)	Hardness Shore D	Stress@ Break (Mpa)	Strain@ Break (%)
HTR8351(*)	1.15	10@190C	21	24	9	210
G3548	1.15	10@190C	25	35	10	190

^(*) Easy strip-ability for installation without tools

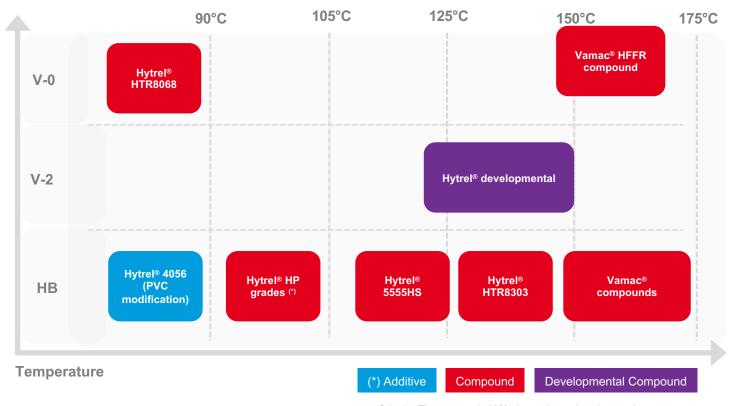
Loose Tube

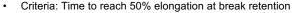
Crastin [®] Grade	Density gr/cm3	MFR (g/10min, 2k16)	Flex Modulus (Mpa)	Strain@ Break (%)
6129	1.32	10@250C	2400	>200
6130	1.30	16@250C	2400	>200
S600F10	1.30	11@250C	2400	>200
ST830FRUV (*)	1.37	3@250C (3Kg)	2100	>50

^(*) Super tough, UV stabilized, FR grade (UL94V-0@0.85mm)

Outer Jacket

Grades	Density gr/cm³	Flex Mod (Mpa)	Hardness Shore D	Stress@ Break (Mpa)	Strain@ Break (%)
Hytrel® HTR8813 (*)	1.23	370	58	11	150
Zytel® LC6200(**)	1	1000	69	35	>150


(*) **NHFR** grade, V-0 @1.5mm, LOI 49% (**) PA612-HI


Solutions for Automotive Cables

Material Solutions for Ultra-thin Wall and Lightweight Cables with Excellent Thermal and Hydrolysis Management

Improving mechanical properties, as well as fatigue, thermal, and hydrolysis resistance for EV and EV battery cables

Air oven aging data measured in injection molded specimen

(*) High Performance grades: Hytrel® 4056, Hytrel® 5556, Hytrel® 6356

Solutions for Cable Compounds

Enhancing Your Cable Formulations with DuPont Specialty Additive and Resin Technologies

Multibase™

Improving processability and flame retardancy of HFFR compounds

Grade	Description
MB50-002	PE-based silicone masterbatch
MB50-001	PP-based silicone masterbatch
MB50-320	EVA-based silicone masterbatch

Hytrel®

Sustainable and plasticizer-free solution for PVC compounds

Grade	Description
Hytrel® 4056	Pellet
Hytrel® 4056P	Powder

Hytrel®

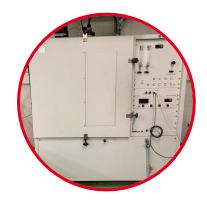
Property improvement of your Hytrel® compound

Grade	Description
Hytrel® 21UV	UV light stabilizer concentrate
Hytrel® 30HS	Heat stabilizer concentrate
Hytrel® 40CB	Concentrate of a fine particle size carbon black
Hytrel® 60LW	Lubricant concentrate

Vamac®

Formulation of best combination of oil-resistant, low temperature, flexible compounds

Grade	Description
VAMAC® Ultra DX	High viscosity, peroxide cured, AEM dipolymer
VAMAC® VMX2144	Dipolymer with lower methyl acrylate (MA) content


Global Wire & Cable Capabilities

Prototype Cable Extrusion Line

Cone Calorimeter ISO 5660

NBS Smoke Chamber ASTM E662, ISO 5659, ABD 0031

VW-1 Vertical FR Cable Test UL 1581

UL Cabinet UL94

Hot Salt Water Resistance Test

Dielectric Test (1kV/1min)

PCT Hydrolysis Tester

Air Oven Aging Lab

Environmental Aging

Working with Us

Whether You are Looking at Innovative Solutions for Cable Insulation or Jacketing, or Developing Your Formulation...

For Your Cable Designs

Testing and Evaluation for Material Development and Customer Support

- Compound characterization capabilities
- Cable extrusion, specific cable tests
- Material analysis on final cable

Our People

Global Team, Wide Range of Expertise From Additives to Cables

- Local application development and commercial team
- Experienced formulation scientists and technicians
- Extrusion specialists for customer support

How We Work

For Your Compound Developments

Formulation Support with Our Ingredient Solutions

- Formulation support (recommendations for compatible raw materials, etc.)
- Analytical testing
- Application testing

Our Planet

Duty to Provide Innovative and Sustainable Products to Society

- Environmentally-friendly footprint (WEE, ROHS, REACH)
- No or low halogen content in our developments
- Solutions for lightweighting
- Renewably-sourced solutions (Hytrel® RS)

Sustainability

Advancing toward carbon neutrality by 2050 and enabling a circular economy

innovate now

- Engendering sustainability into all aspect of development cycle (LCA focus, new products)
- Improving circular economy options for our products (pilots, external leadership)
- Innovate with a consideration for green chemistry principles

protect now

- Move to carbon neutral (carbon footprint reduction w/ increasing renewable energy)
- Reducing water, waste and energy usage: Operation Clean Sweep; Bold Energy

empower **now**

- Enable the health and wellbeing of employees and impact the communities we live in
- Advance diversity and focus on women and minority parity in leadership

Connect with Us

Mobility & Materials

Transforming Industries and Improving Lives Through Material Science

Visit

Material Data Center for technical data sheets, comparisons, and more

DuPont.MaterialDataCenter.com

Learn More

DuPont.com/mobility

<u>LinkedIn.com/Company/</u> <u>DuPont-Mobility/</u>

@DuPont_Mobility

© 2021 DuPont. All rights reserved. DuPont[™], the DuPont Oval Logo, and all trademarks and service marks denoted with [™], [™] or ® are owned by affiliates of DuPont de Nemours, Inc. unless otherwise noted. Nothing contained herein shall be construed as a representation that any recommendations, use or resale of the product or process described herein is permitted and complies with the rules or regulations of any countries, regions, localities, etc., or does not infringe upon patents or other intellectual property rights of third parties.

The information provided herein is based on data DuPont believes to be reliable, to the best of its knowledge and is provided at the request of and without charge to our customers. Accordingly, DuPont does not guarantee or warrant such information and assumes no liability for its use. If this product literature is translated, the original English version will control and DuPont hereby disclaims responsibility for any errors caused by translation. This document is subject to change without further notice.