A TOOLBOX APPROACH TO ENHANCED APPLICATION SPECIFIC PERFORMANCE IN **ACURE**™ SYSTEMS

Robert Skarvan & Bart Noordover 16 November 2022

Robert Skarvan Business Development Director Americas robert.skarvan@allnex.com

Bart Noordover Lab Leader Synthesis Technology EMEA bart.noordover@allnex.com

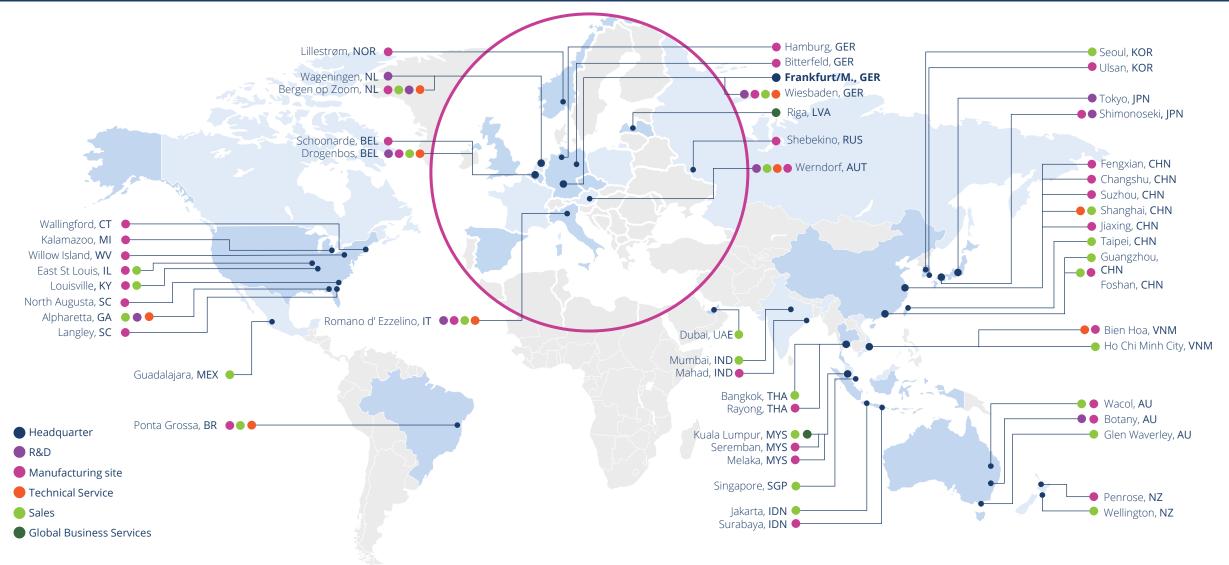
ALLNEX AT A GLANCE

Our global manufacturing network and market footprint makes allnex an attractive and preferred business partner. With a highly skilled and dedicated staff, we focus on what we do best and are the best at doing.

TOTAL REVENUES EUR 2.4 billion in 2021

4 BUSINESS AREAS

33 MANUFACTURING SITES worldwide



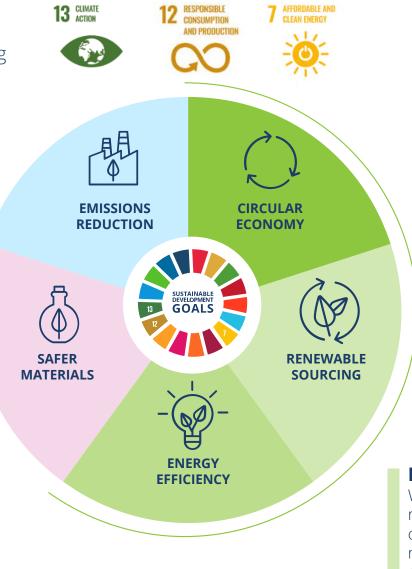
■ APAC ■ EMEA ■ Americas

OUR GLOBAL FOOTPRINT

OUR SUSTAINABILITY PILLARS

These pillars form the basis of allnex's ambitious Sustainability Program, which covers all aspects from product development, raw material sourcing and manufacturing to supply chain management and customer service.

EMISSIONS REDUCTION


We work to reduce the emissions of volatile organic solvents across the product lifecycle to protect people and the environment.

SAFER MATERIALS

We are committed to making the substitution of potentially harmful chemicals by safer options one of our guiding considerations.

ENERGY EFFICIENCY

We design our product and manufacturing process in a way that enables maximum efficiency in energy utilization across the product lifecycle.

CIRCULAR ECONOMY

We diligently explore options to limit the consumption of resources, keep them in use as long as possible, and eventually recover and recycle them at the end of service life.

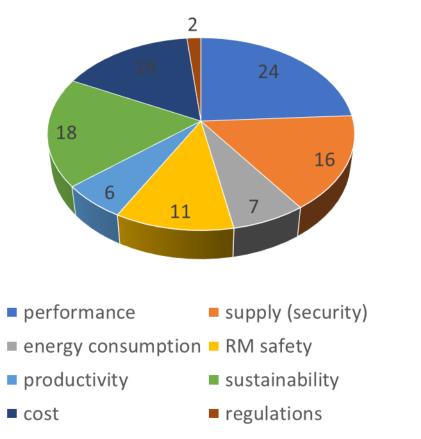
RENEWABLE SOURCING

We aim at minimal use of finite resources and strive to reduce climate impacts by looking at renewable alternatives for raw materials and the energy we use.

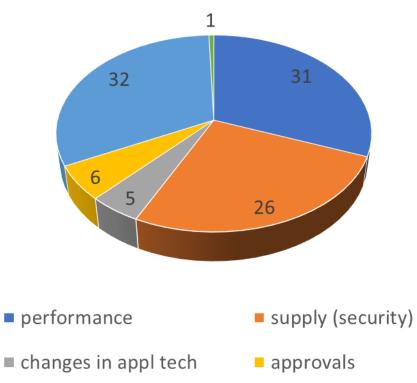
OUTLINE

ACURE[™] Introduction

Sustainable Performance


The ACURE™ Toolbox

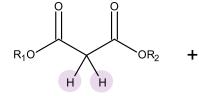
- saving energy
- ultra-high solids & biobased
- product selection
- primers & sealers
- formulation examples

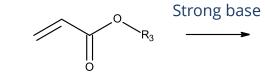


Main challenges in your industry

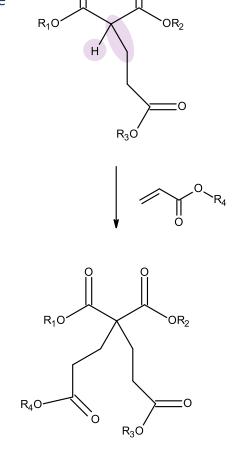
Main hurdles to adopt new technology

resources



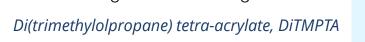

ACURE[™] Introduction Chemistry & Performance profile

ACURE[™] CHEMISTRY IS BUILT ON MICHAEL ADDITION


Real Michael addition (RMA) topcoats

Electron donor

Malonate functional polyester (pKa \approx 13) Acrylate functional oligomer Strong base required (pKa > 13) Creating C-C bond (robust)


Few polar functional groups (OH, NH): low viscosity and VOC

COMBINING LONG POT LIFE WITH FAST DRYING

Resin components

Malonate functional polyester Acryloyl functional oligomer, e.g. DiTMPTA

CH₃ CH₃ O.

.CH₂

CH2

Blocked base catalyst

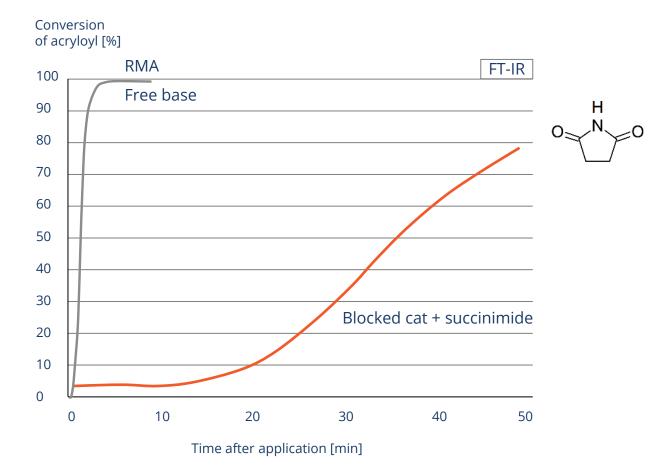
ightarrow combined with primary, volatile alcohol to further extend potlife

$$Et \xrightarrow{O}_{O} Et + OH^{-} \longrightarrow Et \xrightarrow{O}_{O} + EtOH$$

$$Et_{O} + HA \leftrightarrow CO_2 + EtOH + A$$

ACURE[™] uses a special blocked base catalyst combined with kinetic additives

- decoupling between pot life and dry time
- excellent control of open time


Donor and acceptor form stable, non-reactive mixtures

Acidic species in resin and paint formulation should be avoided

PREVENTING THE OPEN TIME WINDOW FROM SLAMMING SHUT

Controlling the RMA reaction

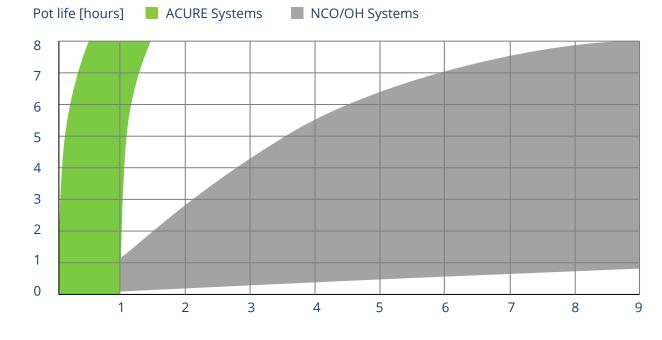
Acidic species used to control open time

Succinimide very effective at low dosage

ACURE[™] malonates available with and without succinimide

Structure	Name	рКа (in water)
	acetylacetone	9.0
	succinimide	9.5
	ethylacetoacetate	10.7
	malonate	13

ACURE PROVIDES A TUNABLE BINDER PLATFORM FOR USE ACROSS A BROAD **RANGE APPLICATIONS**


Performance profile of RMA paints

Tunable drying properties

- Pot life: between 1.5 hrs and >24 hrs
- Tack-free time: 5–90 minutes at RT
- Open time: 5–30 minutes

Rapid hardness development and dry to handle Excellent chemical and mechanical resistance Platform technology, applicable on multiple substrates

The de-coupling of dry time and pot life

Tack-free dry time [hours] Note: tack-free time corresponds to stage 3 dry

Sustainable Performance HSE, raw material sourcing & energy use

GREENER BY NATURE

ACURE[™] hits all five of allnex's sustainability pillars

ENERGY Reduction in curing energy due to the speed of Michael addition **EFFICIENCY** chemistry: lower temperature and shorter cycle times

CIRCULAR Reduced paint waste from longer pot lives, **ECONOMY** enabled by ACURE[™]'s unique blocked catalyst

AIR

SAFER

VOC levels 200g/L lower than traditional systems: in line with **EMISSIONS** trend towards ultra-high solids paints; WB version available

ACURE[™] paints do not require isocyanate, tin or formaldehyde and can be formulated without H317 label **MATERIALS**

SOURCING

RENEWABLE Bio-content potentially over 50% within 2–4 years, over 80% within 5–8 years

NO MORE CURING ENERGY COST ANXIETY!

ACURE[™] offers ultra fast drying and property development at room temperature

60 50 Martens indentation hardness [N/mm²] 40 30 20 10 0 10 20 30 40 50 60 70 80 90 0 Hours after application

Hardness Development: ACURE[™] vs. 2K PU

— 2K PU Ambient Cure 2K PU 80°C 40 min Acure Ambient Cure Acure 50°C 40 min

- Study performed on green tinted topcoats
- 2K PU: SETALUX[®] 27-1551 / Desmodur N 3390
- ACURE™: 510-300, 510-400, 550-100, 550-405
- Ambient conditions: 20 °C, 38% R.H.
- DFT: 55 µm

100

- baked panel preparation
 - Conventional air spray
 - 10 minutes flash-off
 - 40 minutes bake at specified temperature
 - 10 minutes cool down
 - Hardness measured

LEVERAGE ACURE'S REACTIVITY TO YOUR BENEFIT !

Fast cure with long potlife enables:

Greatly reduced energy consumption

reduce oven temperature or eliminate baking altogether

Signficant increases in productivity

multiple layers in 1 working day, at ambient conditions!

Reduced CO₂ footprint – improved sustainabilty

REDUCING AIR EMISSIONS

Ultra-high solids topcoat for primed metal applications

Component	Function	wt%
PART A		
ACURE™ 550-105	Acceptor resin	25.59
ADDITOL™ XL 6592	Dispersing additive	0.68
Kronos 2310 TiO ₂	Pigment	35.16
ACURE™ 510-202	100% reactive donor resin	19.53
ACURE™ 510-272	100% reactive donor resin	5.86
ACURE™ 510-174	Low EQW donor resin	3.91
Tinuvin 292	Light stabilizer	0.39
ADDITOL [™] XL 123N	Flow & leveling	0.49
ADDITOL [™] VXL 4951N	Defoamer	0.39
ADDITOL [™] XL 6531	Air release additive	0.20
N-propanol	Potlife extension	3.91
Butyl acetate		0.98
PART B		
ACURE™ 500	Blocked base catalyst	2.93

REDUCING AIR EMISSIONS

Ultra-high solids topcoat for primed metal applications

PERFORMANCE CHARACTERISTICS

König hardness at 2 hours König hardness at 1 day König hardness at 1 week	50 seconds
Tack-free time	40 minutes
Pot life	4 hours

ţ.

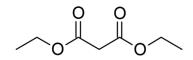
Excellent adhesion to epoxy primers

Outstanding weathering resistance

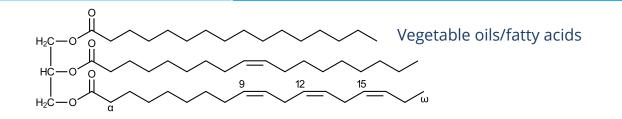
BRINGING IN BIOBASED

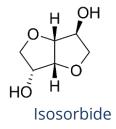
Pathways to higher biobased content

Polyester-based resins allow for easy incorporation of biomass-derived monomers/oligomers


Aim

Develop malonated polyesters with significant BB content, having similar or better performance as benchmark petro-based products


Two approaches


Drop-in monomer replacement by BB version

2 Alternative BB monomers

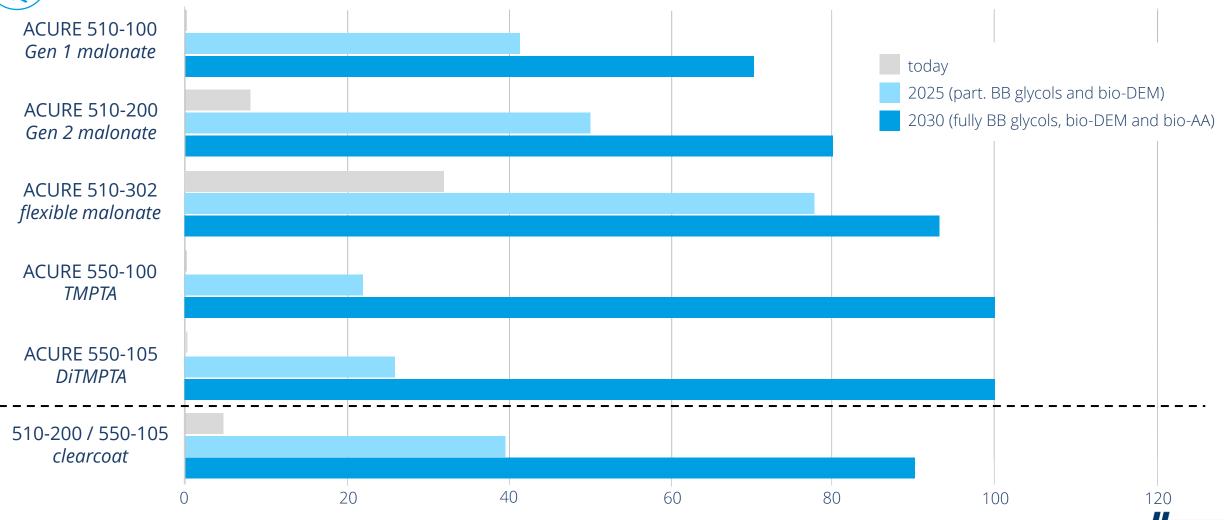
Bio-DEM[™]

Potential biomass content in RMA resin products:

Drop in: malonate binders: 41–77% (bioDEM + partly biobased polyols) or 70-93% (bioDEM + fully biobased polyols) **New binders:** up to 85–90% (bioDEM + fully biobased polyols)

BB FORMULATION AND PERFORMANCE

Mill base	Weight (g)	Resin	BB content potential [%] ¹	Tack-free time [min]	Persoz hardness (1 d, 60 μm) [s]	appearance (visual) ²	wet adhesion on epoxy primer ³ [% delam. (ISO score)]
Ditrimethylolpropane tetraacrylate	238.7	MPE Ref	50	60	143	++	0 (0)
Dispersing agent Kronos® 2310 TiO ₂ pigment	36.3 725	MPE BB 1	63	65	142	+/-	10(2)
	4000	MPE BB 2	58	40	130	+	15 (2)
Total	1000	MPE BB 3	49	n.d.	130	++	40 (4)
Component 1		MPE BB 4	56	58	133	++	3 (0-1)
MPE Ref (85 wt% in BuAc) Ditrimethylolpropane tetraacrylate Mill base Succinimide n-Propanol Butyl acetate ADDITOL [®] XL 123 N surface additive ADDITOL [®] VXL 4951 N defoamer Light stabilizer	302.9 29.3 588.9 2.1 21.3 21.3 2.6 4.3 4.3		MPE BB 4		diethyl n ² ++ = ex ³ percen	nalonate and partially cellent, + = good, +/- : tage of delamination (ed after 4 weeks of exp	sosorbide, succinic acid, vegetable oils, BB glycols = acceptable, - = not acceptable, = pc upon cross-hatch adhesion testing posure in a Quick Condensation Testing
Component 2 Carbonate-blocked base (in solution) Total Butyl acetate until spray viscosity Paint characteristics Solids content (at spray viscosity) PVC VOC (theoretical) Spray viscosity	23.0 1000 ± 45 84.3 wt% 20.3% 210 g/L 26 s DIN-4, 23 °C		1 day QCT 1 wk QC 4 wks QCT	T	hardness d	evelopment	on epoxy and good n par with current best



THE GREEN ROAD AHEAD

Potential renewable content in ACURE™ binders [wt%]

The ACURETM Toolbox Resin selection, formulation & layer systems

Toolbox approach to cover a wide range of application fields

Primary ACURE™ components: **donor**, **acceptor** & **catalyst**

Toolbox options: **new primary** and **secondary** binders, **succinimide** and **solvent** content, layer configurations using **primer** / **sealer**

ACURE™ DONOR RESINS

Platform of 3 versatile, primary malonate binders

Available with or without succinimide

100 % reactive versions also available (DEM as a solvent)

Binder series	Key characteristics	Base resin for
ACURE™ 510-100	Very fast drying; excellent durability	Primed metal, flooring
ACURE™ 510-200	Adhesion robustness; higher XLD; excellent appearance; low viscosity	(Primed) metal, wood
ACURE™ 510-300	Flexibility; excellent appearance and adhesion; 100% reactive	Flooring, wood

Secondary binders include: Iow EQW binders for super-fast drying and improved hardness

self-matting versions of ACURE 510-170 and 510-200

customer specific experimental grades with improved gloss, adhesion to specific substrates, bio content

ACURE[™] ACCEPTOR RESINS

Special, super-low acid content grades developed specifically for ACURE™

100% reactive with optimized functionality

Binder	Key characteristics	functionality
ACURE™ 550-100	TMPTA: good cure response; very low viscosity; economic	3
ACURE™ 550-105	DiTMPTA: excellent drying; hardness development; favourable EH&S profile	4

Secondary binders include:

urethane and epoxy acrylates for improved adhesion: ACURE 550-405

- flexibilized types to tune property balance: ACURE 550-230
- improved hardness and appearance, e.g. acrylic acrylate: ACURE 550-200
- self-matting versions of both main binders

ACURE™ CATALYSTS

Carbonate-blocked TBAH base catalysts for optimal potlife

Afford rapid drying upon deblocking (moderated with primary alcohols and succinimide)

Binder	Key characteristics	EQW [g/Eq]
ACURE™ 500	Main catalyst with broad applicability	1077
ACURE™ 540	Water-free catalyst; enables use of e.g. aminosilanes in 2K configuration	1244

Experimental types include:

increased carbonate content

higher flash point

New

ACURE™ COMPATIBLE PRIMERS AND SEALERS

Various types of primers are suitable, incl. epoxy-amine, Ketac, 2k PU (WOD and WOW)

On acidic substrates (e.g. wood, putty, WB basecoat), Ketac or a 1K acrylic can be used as sealers

Primer / sealer system	Features	products
Easy Cure epoxy-amine	Excellent adhesion; fast recoat; high solids	<u>WB:</u> BECKOPOX™ EP2384 + BECKOCURE™ EH 2261 <u>SB:</u> BECKOPOX™ 2688/80MEK + BECKOCURE™ 2240/70MP
Standard epoxy-amine	Excellent anti-corrosion; good adhesion	BECKOPOX™ EP 301/75X + BECKOPOX™ EH 651/70X
Ketimine - Acetoacetate	Very fast ambient dry; W-o-W; excellent blocking of acidic species (incl. tannins); adhesion; flexibility	<u>KETAC:</u> SETAL [®] 7205 BA-86 + SETALUX [®] 7006 SS-65
1K Acrylic	Fast drying; good blocking of acidic species; early sandability	MACRYNAL [®] SN 2770/33BAC

EXAMPLE 1 – HIGH-GLOSS TOPCOAT ON EPOXY PRIMER

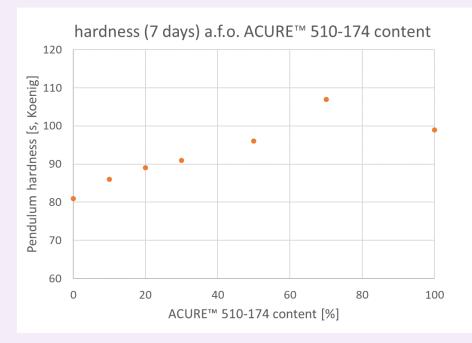
Requirements

- dry time < 1 hr, tunable open time
- excellent dry and wet adhesion
- good early hardness / imprinting resistance

Resin and catalyst selection

DONOR primary: ACURE™ 510-200 / -270 secondary: ACURE™ 510-174 (20-70%)	ACCEPTOR primary: ACURE™ 550-105 secondary: ACURE™ 550-405 (15-30%)	CATALYST ACURE™ 500
2nd generation donor combined with low EOW	DITMPTA mixed with urathana acrulate for	Standard carbonate blocked ACLIRE catalyst

2nd generation donor combined with low EQW binder for early hardness DiTMPTA mixed with urethane acrylate for improved adhesion Standard carbonate blocked ACURE catalyst based on TBAH



EXAMPLE 1 – HIGH-GLOSS TOPCOAT ON EPOXY

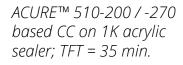
		Weight	Function
Mill base			
ACURE 550-105		30.06	acryloyl functional resin
ADDITOL® XL 6592 (80 % in 1	MPA [*])	1.35	dispersing additive
ADDITOL VXL 4951 N		0.67	defoamer
ADDITOL XL 6531		0.34	air release additive
Kronos 2310		67.58	pigment
grind until < 10 μm, keep tempe	erature < 40 °C		
		100.00	
Component 1			
ACURE 510-200		21.98	malonate functional resin
ACURE 510-270 **		6.83	malonate functional resin
Mill base		65.04	
n-propanol		2.20	
Butyl acetate		0.88	
Mix and add:			
ADDITOL XL 123 N		0.26	surface additive
Tinuvin 292		0.44	light stabilizer
Component 2			
ACURE 500		2.37	catalyst
Total		100.00	
Butyl acetate until spray visc	osity	± 8.0	
REC22048	Tack Free: 50)-60 min	%NV: 83.5%
	König 7 days	: 82 sec	VOC: 232 g/L
white topcoat	Potlife: 4 hou		

Introducing the low EQW ACURE[™] 510-174

- dry time: 30-45 minutes
- hardness and dry speed tunable
- enhanced mechanical and chemical resistances
- robust dry and wet adhesion retained on epoxy primer

EXAMPLE 2A – FAST-DRYING CLEARCOAT ON WOOD

Requirements


- dry time < 1 hr
- excellent drying on acidic wood
- high hardness

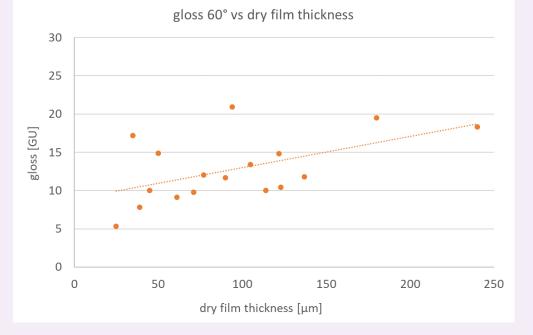
Formulation input

sealer required to block tannins 2nd generation donor combined with low EQW binder for hardness DiTMPTA for excellent drying and chemical resistance

Sealer, resin and catalyst selection

SEALER	DONOR	ACCEPTOR	CATALYST
KETAC for acidic wood or 1K acrylic for mildly acidic wood	primary: ACURE™ 510-200 / -270 secondary: ACURE™ 510-174 (30-50%)	primary: ACURE™ 550-105	ACURE™ 500

- effective blocking of tannins; dry time of ACURE™ CC: 30-50 min.
- high gloss finish
- hardness and resistances increase with 510-174 content
- broad range of non-volatile contents possible



EXAMPLE 2B - MATTING ACURE™ CLEARCOATS

- matting high solids paint is not trivial
- commonly used matting agents may be acidic \rightarrow drying retardation
- high loading of matting agents may compromise economic feasibility

Novel self-matting technology

- self-matting versions of main ACURE™ binders available
- gloss level may be tuned by combining with standard binder
- no cure retardation observed
- no detrimental effects on resistances or adhesion
- stable matting effect a.f.o. film thickness

RE™ 510-172 or 510- JRE™ 510-400* or 510		primary: ACUI	RE™ 550-105	
compliant alternatives available o	on request			
		Component	Function	wt%
	PART A	ACURE™ 550-105	Acceptor resin	41.15
		ADDITOL [™] XL 6507	Defoamer	0.74
		Modaflow [®] Lambda	Flow & leveling	0.74
STATISTICS STATISTICS		ACURE™ 510-372	Donor resin with succinimide	46.00
		ACURE™ 510-400	Low EQW ACAC donor resin	5.04
		Tinuvin 292	Light stabilizer	0.95

ACCEPTOR

Resin and catalyst selection

Formulation input

PART B

ACURE™ 500

100% reactive main binder with low EQW binder for speed and hardness DiTMPTA for excellent drying with standard ACURE[™] 500 catalyst

Blocked base catalyst

5.42

EXAMPLE 3 – ULTRA HIGH SOLIDS CLEARCOAT ON CONCRETE

Requirements

- fast drying, with good tie-in
- very low VOC
- fast return to service

primary: ACUR secondary: ACU

* not REACH registered, con

DONOR

ES:

CATALYST

500

ry A/D = 0.95succinimide

EXAMPLE 3 – ULTRA HIGH SOLIDS CLEARCOAT ON CONCRETE 🛛 🖉

Ultra-high solids CC for flooring applications

PERFORMANCE CHARACTERISTICS

(DFT 4.0 mils on Leneta chart)

Gloss (20°)	83	
Gloss (60°)	89	
Hardness at 2 hours		
(DFT 4.0 mils on CRS panel)		
König pendulum [seconds]	14	
Martens hardness [N/mm²]	1.1	

Hardness at 1 and 7 days

König pendulum [seconds]	103/127
Martens hardness [N/mm²]	63/74

Drying times [minutes]

(DFT 4.0 mils on Leneta chart)	
Set-to-touch	37
Tack-free	41
Hard-dry	49
Through-dry	60

Tie-in time (lapping) [minutes] up to 20

APPEARANCE AND TIE-IN (LAPPING) PERFORMANCE (20 min.)

ACURE™

Premium commercial 2K polyaspartic

EXAMPLE 4 – IMPROVING DTM ADHESION

Requirements

- monocoat application
- dry and wet adhesion improvement
- formulating options to include adhesion promoters

Resin and catalyst selection

DONOR primary: ACURE™ 510-200 / -270

> 2nd generation donor combined with high EQW urethane acrylate (550-230) which provides ductility through phase separation

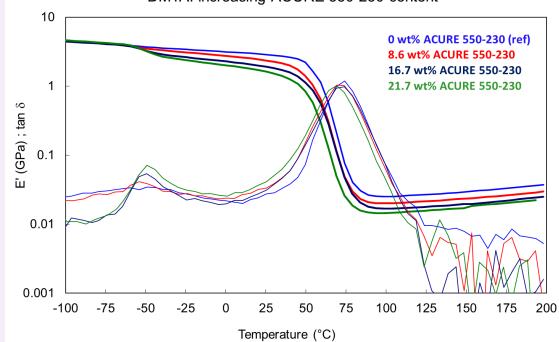
ACCEPTOR

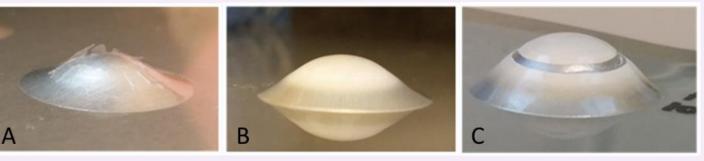
primary: ACURE[™] 550-105

secondary: ACURE[™] 550-230

water-free catalyst enables use of aminosilane adhesion promoters

ACURE[™] 540




EXAMPLE 4 – IMPROVING DTM ADHESION

Improving ductility with ACURE™ 550-230

- reaction-induced phase separation
- soft phase not compatible with high M, crosslinked continuous phase
- improved ability of the coating to absorb energy and reduce/prevent crack propagation
- adhesion improvements observed over broad range of substrates, incl. epoxy primer, PU primer, E-coat, phosphated steel, cold-rolled steel and shot-blasted steel

- A: Brittle failure of reference (0% 550-230) at 40 cm fall height, delamination of coating
- B: Pass at 21% of 550-230 at 75 cm fall height, showing whitening, i.e. ductile deformation
- C: Ductile failure at 21% 550-230 at 100 cm fall height, coating still adheres to aluminium

THE NEW ACURE[™] TOOLBOX

Summary – new key ACURE[™] products to improve your formulation

Enhanced adhesion (GI, ACE, Protective) water-free catalyst ACURE 540 malonated polyester ACURE 510-200 urethane acrylate ACURE 550-230 Ultra-high solids (Flooring, GI) 100% reactive malonate ACURE 510-172 ACURE 510-372 flexibilized, 100% reactive Improved drying (Industrial Wood) low EQW malonate ACURE 510-174 in conjunction with Ketac sealer Gloss reduction (Wood, GI) Self-matting ACURE grades (malonates / acrylates)

THE NEW ACURE[™] TOOLBOX

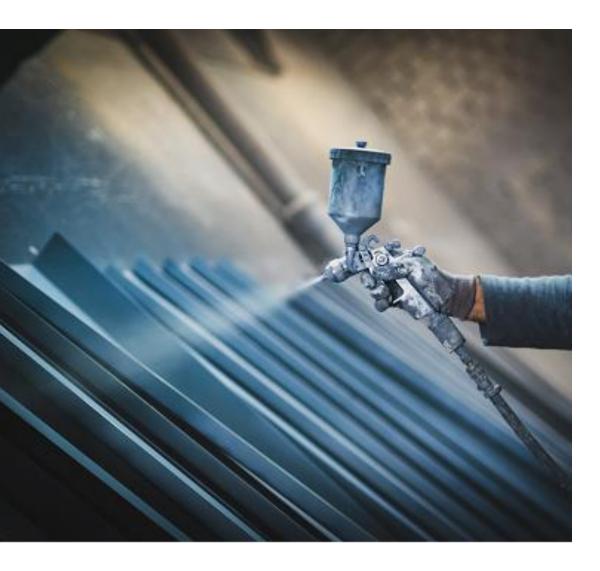
ACURE - a truly sustainable coating chemistry platform

ENABLING YOUR NEXT SUSTAINABLE SOLUTION!

ALLNEX IS MOVING FORWARD WITH ACURE™

Learn all about Allnex's new waterborne ACURE[™] system

The Ultra Fast Cure with the long pot life of ACURE[™] now available in a waterborne system!


Webinar – December 1, 2022 09.00 AM EST/03.00 PM CET

Register today WEBINAR: ACURE AQ Fast Curing 2K Systems, No Popping Limit (ulprospector.com)

THANK YOU FOR JOINING OUR WEBINAR!

Questions?

Bart Noordover <u>bart.noordover@allnex.com</u>

Robert Skarvan <u>robert.skarvan@allnex.com</u>

LEGAL NOTICES

Disclaimer: allnex Group companies ('allnex') exclude all liability with respect to the use made by anyone of the information contained herein. The information contained herein represents allnex's best knowledge but does not constitute any express or implied guarantee or warranty as to the accuracy, the completeness or relevance of the data set out herein. Nothing contained herein shall be construed as conferring any license or right under any patent or other intellectual property rights of allnex or of any third party. The information relating to the products is given for information purposes only. No guarantee or warranty is provided that the product and/or information is suitable for any specific use, performance or result. Any unauthorized use of the product or information may infringe the intellectual property rights of allnex, including its patent rights. The user should perform his/her own tests to determine the suitability for a particular purpose. The final choice of use of a product and/or information as well as the investigation of any possible violation of intellectual property rights or misappropriation of trade secrets of allnex and/or third parties remain the sole responsibility of the user. Notice: Trademarks indicated with ®, TM or * as well as the allnex name and logo are registered, unregistered or pending trademarks of Allnex Netherlands B.V. or its directly or indirectly affiliated allnex Group companies.

©2022 allnex Group. All Rights Reserved.

